CSE 130 SP16- Partial Solution Key For Sample Exams
Final Fall 06
6 (a)
def elementAndRest[A](xs: List[A]): Iterator[(A, List[A])] = {
for (i <- (0 until xs.length).iterator)
yield (xs(i), xs.slice(0, i) ++ xs.slice(i+1, xs.length))
}
6 (b)
def permutations[A](xs: List[A]): Iterator[List[A]] =
xs match {
case Nil =>
Iterator(List())
case x::rest =>
for ( ys <- permutations(rest)
; i <- 0 until xs.length)
yield ys.slice(0, i) ++ List(x) ++ ys.slice(i, ys.length)
}
Fall 07
6 (d)
object tick {
private var ctr = 0
def apply() = {
ctr += 1
ctr
}
}
7 (a)
def valid(es:List[(Int, Int)], c: List[Int]): Boolean =
es.forall(e => c(e._1) != c(e._2))
7 (b)
def colorings(n: Int, k: Int): List[List[Int]] = {
if (n <= 0) List(List())
else { for ( cs <- colorings(n-1, k)
; c <- 0 until k)
yield (c::cs) }
}
7 (c)
def initColoring(n: Int) =
(0 until n).toList.map(x => 0)
def lastColoring(xs: List[Int], k: Int) =
xs.forall(_ == k-1)
def nextColoring(xs: List[Int], k: Int) = {
var res : List[Int] = List()
var carry = 1
for (i <- (xs.length - 1) to 0 by -1) {
val sum = carry + xs(i)
val dig = sum % k
carry = sum / k
res = dig :: res
}
res
}
Midterm Spring 12
1 (a)
val (<.>) : ('b -> 'c) -> ('a -> 'b) -> ('a -> 'c)
1 (b)
1 (c)
let giftList =
let rec helper acc xs = match xs with
| [] -> acc^" and thats what I want for Christmas!"
| x::xs' -> helper (acc ^ " and ") xs'
in helper ""
2 (a)
val getEven : int list -> int option
2 (b)
let rec find_first f xs = match xs with
| [] -> None
| x::xs' -> if f x then Some x else find_first f xs'
2 (c)
val tree_to_string: string tree -> string
2 (d)
let rec post_fold f b t = match t with
| Leaf -> b
| Node (x, l, r) -> f x (post_fold f b l) (post_fold f b r)
2 (e)
let rec in_fold f b t = match t with
| Leaf -> b
| Node (x, l, r) -> let bl = in_fold f b l in
let bx = f bl x in
let br = in_fold f bx r in
br
3 (a)
3 (b)
3 (c)
let rec assoc key kvs = match kvs with
| (k, v)::rest -> if key = k then Right v else assoc key rest
| [] -> Left key
3 (d)
let map f e = match e with
| Left l -> Left l
| Right r -> Right (f r)
3 (e)
let map2 f e1 e2 = match (e1, e2) with
| Right r1, Right r2 -> Right (f r1 r2)
| Left l, _ -> Left l
| _, Left l -> Left l
4 (a)
let lookup x env = match assoc x env with
| Left z -> Left (UnboundVariable z)
| Right i -> Right i
4 (b)
let safeDiv n m =
if m != 0 then Right (n / m) else Left DivideByZero
4 (c)
let rec eval env e = match e with
| Const i -> Right i
| Var v -> lookup v env
| Bin (e1, Plus, e2) -> map2 (+) (eval env e1) (eval env e2)
| Bin (e1, Div, e2) -> (match (eval env e1) (eval env e2) with
| _, Right 0 -> Left DivideByZero
| Right i1, Right i2 -> Right (i1/ i2)
| Left l, _ | _, Left l -> Left l)