CSE 131 Final (Fal6)

Ranjit Jhala

December 9th, 2016

NAME

SID

e Where limits are given, write no more than the amount specified.
o Write your full name on the line at the top of this page.

¢ Do not separate pages.

e You may refer to a double-sided cheat sheet.

¢ Avoid seeing anyone else’s work or allowing yours to be seen.
¢ Do not communicate with anyone but an exam proctor.

o If you have a question, raise your hand.

Right after the last lecture, your professor realized, to his horror, that we finished
131 without actually implementing a real language, which must, of course, have
pointers, mutation and loops! In the final, we will implement these features so
that, for example, we can compile imperative programs like:

def fib(n): let i = (0, false)
, vals = (0, 1)
in while (i[0] < n):
(let next = vals[0] + vals[1] in
i[0] ;= 1i[0] + 1;
vals[0] := valsl[1];
vals[1] := next
);
vals[1]
in £ib(10)

Part I. Updating Tuples [35pts]

First, lets add support for updating tuples.

Concretely, that means that the program

let t (10, 20)
, a= (t[0] :=t[0] + 2)
in

(tfo], tl1D

should evaluate to (12, 20), as the first line creates a tuple, and the second
line executes an tuple-update expression to increments the 0-th field by 2.

Similarly,

let t = (10, 20)
,a=t[1] = t[1] + 2

in

(¢fol, tl1D)

updates the 1-th field and hence, should evaluate to (10, 22)

Q1: Represent [3 pts]
Lets represent updates by extending the Expr type with a SetItem constructor:

data Expr a

| SetItem (Expr a) Field (Expr a) a

The first Expr is the tuple being updated, the Field describes which part of
the tuple is changed, and the second Expr is the value that it is changed to. As
before, a Field is defined as:

data Field = Zero | One

Intuitively, the update expression e1[£1d] := e2 will be represented by SetItem
el f1d e2 1 (where 1 is the tag meta-data as in your assignment.)

Fill in the blank below to get a Haskell represention of t[0] := t[0] + 2
ansl :: Expr ()

Q2: ANF Example [5pts]

What is the ANF form of
t[0] := t[0] + 2

fill in the blanks below to get the ANF version of the above

Q3: ANF [5pts]

Assume that in e1[f] := e2 we want to first evaluate the tuple el and then
evaluate e2.

Next, fill in the blanks below to extend anf to handle the case for SetItem

anf :: Int -> Expr a -> (Int, AnfExpr a)

anf i (SetItem el fld e2 1)
where

HINT: Use imms and stitch described in the Appendix.

Q4: Type Inference [7pts]

Next, lets extend the type inference function to handle tuple updates.

Just like Priml, Prim2, If, Tuple and GetItem we can simply treat Setltem as
special kind of function call that takes two parameters, the source tuple, and
the updated value.

ti :: (Located a) => TypeEnv -> Subst -> Expr a -> (Subst, Type)
ti env su (GetItem e f 1) = instApp (sourceSpan 1) env su (fieldPoly £f) [e]
ti env su (SetItem e f e' 1) = instApp (sourceSpan 1) env su (updatePoly f) [el, e2]

Complete the code for ti by completing the definition for updatePoly.

updatePoly :: Field -> Poly

updatePoly Zero = Forall [____] ([s 1 :=>)

updatePoly One = Forall [____]1 ([s] =)

The output value will be the same as that being assigned. That is,

e (t[0] := false) should evaluate to false, and
e (t[0] 12) + 1 should evaluate to 13.

HINT: See how ti was implemented for Prim1 in the Appendix.

Q5: Assemble [7pts]
Lets assume that as in the assignments:

1. Variables at stack position i have their value at address [ebp - 4 * i],
2. The variable t lives at position 10 on the stack,
3. Tuple pointers are 8-byte aligned, and end with 001 (in binary.)

4. Tuples are layed out in the heap as in egg-eater so, a tuple of values
v0, ...,vn is layed out in the heap as below and user-constructed tuples
(i-e. not closures) tuples have n = 1 (i.e. just v0, v1).

(4 bytes) (4 bytes) (4 bytes) (4 bytes)

Consider the expression
t[0] := 12
Assume that t lives at position 10 on the stack. Fill in the blanks below to get

the assembly generated by the above expression. Recall that (t[0] := 12) + 1
should evaluate to 13, so at the end, eax should hold (the representation of) 12.

Q6: Compile [8pts]

Inspired by the above, fill in the implementation that compiles an assignment
expression.

compileEnv :: Env -> AExp -> [Instruction]
compileEnv env (SetItem vl fld v2)

where
fO0ff :: Field -> Int
fO0ff Zero = 4
fOff One = 8

HINT: You may want to use the helper immArg in the Appendix

Part II. Sequencing [30pts]

Next, lets implement sequencing, i.e. evaluating one expression after another,
so, for example:

let t = (0, 0)

in
t[0] := 2;
t[1] := 6;
t[0] + t[1]

should evaluate to 8. That is el; e2 should evaluate el and then e2 and then
evaluate the value that e2 produced.

Q7: Represent [5pts]
Lets represent sequenced expressions as:

data Expr a

| Seq (Expr a) (Expr a) a

The first Expr is executed first, and then the second Expr should be executed.

Fill in the blanks below to show how the expression

t[0] := 2;
t[1] := 6;
t[0] + t[1]

can be represented as an Expr

ans7 :: Expr (O

ans7 = Seq ()

() O) O

Q8: ANF Example [5pts]

Fill in the blanks below to get an A-Normal Form of:

t[0]
t [0]

t[0] + 2;
t[0] + 6

HINT: Be careful about that ; !

Q9: ANF [5pts]
Fill in the blanks below to implement anf for sequences.

anf :: Int -> Expr a -> (Int, AnfExpr a)

anf i (Seq el e2 1)

where

HINT: You definitely don’t need all the space given above. . .

Q10: Type Inference [5pts]

Next, lets extend the type inference function to handle sequences.

Again, we can do so by treating Seq as a special kind of function call that “takes”
two parameters, the first and second expressions, and “returns” the second
expression’s value as the result.

ti :: (Located a) => TypeEnv -> Subst -> Expr a -> (Subst, Type)
ti env su (Seq el e2 1) = instApp (sourceSpan 1) env su seqPoly [el, e2]

Complete the above implementation by filling in the definition of SeqPoly
seqPoly :: Poly

seqPoly = Forall [1 (L , 1 :=>)

Q11: Assemble [5pts]

Fill in the blanks below to show the assembly that should be generated for

t[0] := 12; t[1] := addi1(t[0])

Again, assume that t lives at position 10 on the stack.
_____________________________________ *
_____________________________________ *

Q12: Compile [5pts]

Next, fill in the implementation of compileEnv for sequences.

compileEnv :: Env -> AExp -> [Instruction]
compileEnv env (Seq el e2 _)

HINT: You definitely don’t need all the space given above. . .

Part III. While [40pts]

Finally, lets add support for while loops.

Concretely that means that the expression:

let t = (0, 1) in

while (t[0] < 10):
(t[0] := t[0] + 1
; tl1] t[1] * 2
);

t[1]

should evaluate to 1024.

Q13: Represent [4pts]
Lets represent while loops by extending Expr as:

data Expr a

| While (Expr a) (Expr a) a

The first Expr is the loop “condition” and the latter is the loop “body”.

Fill in the blanks below to show how the expression

while (t[0] < 10):
t[0] := add1(t[0])

can be represented as an Expr

ans13 :: Expr ()

ans13 = While (

Q14: ANF Example [6pts]
Consider the expression:

while (£[0] < 10):
t[0] := add1(t[0])

10

Fill in the blanks below to get an A-Normal Form representation of the above.

Q15: ANF [5pts]

Drawing inspiration from the above, fill in the blanks below to implement anf
for while

anf :: Int -> Expr a -> (Int, AnfExpr a)

anf i (While el e2 1)

where

HINT Just because I gave you four lines doesn’t mean you need to use them.

Q16: Type Inference [7pts]

Stop me if you’ve heard this before: we can do type inference for while using
a special function call that takes two input parameters: the “condition” and
“body” expressions, and returns an output that is ... 7 I don’t know! Can you
help me complete ti for While by filling in the definition of whilePoly 7

ti :: (Located a) => TypeEnv -> Subst -> Expr a -> (Subst, Type)
ti env su (While el e2 1) = instApp (sourceSpan 1) env su whilePoly [el, e2]

whilePoly :: Poly
whilePoly = Forall [1 ([s] =

Q17: Assemble [8pts]

Suppose that

e instrsl is a list of instructions evaluating t[0] < 10, at the end of which
eax holds the representation for true if t [0] was indeed less than 10 (and
false otherwise)

e instrs2 is a list of instructions evaluating t[0] := add1(t[0]),
Use instrsl and instrs2, to obtain the assembly corresponding to:

while (t[0] < 10):
t[0] := add1(t[0])

HINT You may write repr True and repr False if you need to use the
(representations) of true and false in the assembly below.

12

Q18: Compile [10pts]
Drawing inspiration from the above, complete the implementation of compileEnv

for while loops. You can assume that taglabel generates assembly control flow
labels:

taglabel :: Int -> Tag -> Label
and that 1 has type Tag, a unique value for each sub-expression.

compileEnv :: Env -> AExp -> [Instruction]
compileEnv env (While el e2 1)

labelBegin :: Label
labelBegin = taglLabel O 1

labelEnd :: Label
labelEnd taglabel 1 1

HINT: See the appendix for a list of assembly instructions.

13

Part IV. Recursion via Mutation [75pts]
Lets rewind and assume we do not have while-loops in the language. It turns
out that with tuple assignment (i.e. mutation), we can get rid of recursive

functions, i.e. we can implement recursive def functions by combining mutable
tuples and plain old lambda functions.

Q19: Factorial without Recursion [35pts]

Consider the following lambda-expression that is a wrapper around a recursive
definition of factorial

lambda (m) :
def factorial(n):
if (n < 1): 1 else: n * factorial(n - 1)
in
factorial (m)

Write an equivalent lambda-expression that

e does not use def i.e. does not use recursive functions, but
o does use tuple assignment (and lambda)

to have the the same behavior as the original, i.e. computes the factorial
function.

lambda(m) :

HINT: Assume that the above (non-recursive) program need not be type-
checked.

Q20: Translating Recursion to Mutation [40pts]
Recall from FDL that internally, def was represented as a named function Fun,

so the (recursive version) of the above code is internally represented as an Expr
that looks something like:

14

(Lam ["m"]
(Let "factorial"
(Fun "factorial" ["n"] (If (n < 1) 1 (n * App "factorial" [n - 1])))
(App "factorial" ["m"])))

Complete the implementation of noFun that systematically performs the above
translation; i.e. which would convert Expr that contain named (recursive) func-
tions Fun f xs e into equivalent programs that contain no occurrences of
Fun and hence, no explicitly recursive functions.

noFun :: Expr a -> Expr a
noFun e = go e
where
go (Number n 1) =
go (Id x1) S

go (Prim2 o el e2 1) =

go (If bel e2 1) =

go (Tuple el e2 1) =

go (GetItemel £1) =

go (App e es 1 >=____
go (Lam xs e 1 >=_____
go (Seq el e2 1 = _____

go (SetItem el f e2 1) =

go (Fun f xs e 1)

HINT: The interesting stuff happens in the case for Fun. You may assume that
you have at your disposal, a library function such that substitute e (x, e')
replaces all “free” occurrences of x inside e with e'.

substitute :: Expr a -> (Id a, Expr a) -> Expr a

15

Appendix
Type Definitions

-- | ANF Exzpressions labeled with a unique Tag
type AExp = Expr Tag

-- | Representing Expressions
data Expr a

Number Integer

| a

| Id Id a

| Prim2 Prim2 (Expr a) (Expr a) a

| Tuple (Expr a) (Expr a) a

| GetItem (Expr a) Field a

| SetItem (Expr a) Field (Expr a) a —— NEW
-- | Fields

data Field = Zero | One

-- | Primitive Operations
data Prim2 = ... | Plus

-- | Polymorphic Types
data Poly = Forall [TVar] Type -- forall a. a -> a -> Bool

data Type = TVar TVar -—a
| TInt -- Int
| TBool -- Bool
| [Typel :=> Type = (t1,...,tn) => t2
| TPair Type Type -- (to, t1)

-- | Machine (286) Instructions
data Instruction

= IMov Arg Arg
| TAdd Arg Arg
| ISub Arg Arg
| IMul Arg Arg
| IShr Arg Arg
| ISar Arg Arg
| IShl Arg Arg
| IAnd Arg Arg
| IOr Arg Arg
| IXor Arg Arg
| ILabel Label

| TPush Arg

16

IPop Arg
ICmp Arg Arg

|

|

| IJe Label
| IJne Label
| IJg Label
| IJge Label
| 1J1 Label
| IJo Label
[IJmp Label
| ICall Arg

| IRet

-- | Machine Arquments

data Arg
= Const Int
HexConst Int
Reg Reg

|

|

| RegOffset Nat Reg
| RegIndex Reg Reg
| Sized Size Arg
| CodePtr Label

| GlobVar Text

-- | Registers
data Reg
= EAX | EBX | ECX
| ESP | EBP | ESI

Functions for ANF Conversion

-— | “imms i es’ takes as input a "start" counter ‘i’ and expressions ‘es’, and
- and returns an output “(i', bs, es')’ where

' is the output counter (i.e. t'- 1) anf-variables were generated

-— % 'bs’ are the temporary binders needed to convert ‘es’ to immediate wals

— % g
- * “es'’ are the immediate values equivalent to es

imms :: Int -> [Expr al -> (Int, Binds a, [ImmExpr al)

-= | “stitch bs e’ takes a "contexzt" “bs’ which is a list of temp-vars and their
-- definitions, and an expression e that uses the temp-vars in "bs and glues

- them together into a "Let’ expression.

stitch :: Binds a -> AnfExpr a -> AnfExpr a

17

Functions for Type Inference

ti :: (Located a) => TypeEnv -> Subst -> Expr a -> (Subst, Type)
ti env su (Priml p e 1) = instApp (sourceSpan 1) env su (primlPoly p) [e]

primlPoly :: Priml -> Poly

primiPoly Addl = Forall [] ([TInt] :=> TInt)
primiPoly Subl Forall [] ([TInt] :=> TInt)
primlPoly Print = Forall ["a"] (["a"] :=> "a")

Functions for Compiling

-= | immArg converts an immediate value, %.e. a Number, Boolean or Id
= (on the stack) into an Arg
immArg :: Env -> ImmExpr a -> Arg

18

	Part I. Updating Tuples [35pts]
	Q1: Represent [3 pts]
	Q2: ANF Example [5pts]
	Q3: ANF [5pts]
	Q4: Type Inference [7pts]
	Q5: Assemble [7pts]
	Q6: Compile [8pts]

	Part II. Sequencing [30pts]
	Q7: Represent [5pts]
	Q8: ANF Example [5pts]
	Q9: ANF [5pts]
	Q10: Type Inference [5pts]
	Q11: Assemble [5pts]
	Q12: Compile [5pts]

	Part III. While [40pts]
	Q13: Represent [4pts]
	Q14: ANF Example [6pts]
	Q15: ANF [5pts]
	Q16: Type Inference [7pts]
	Q17: Assemble [8pts]
	Q18: Compile [10pts]

	Part IV. Recursion via Mutation [75pts]
	Q19: Factorial without Recursion [35pts]
	Q20: Translating Recursion to Mutation [40pts]

	Appendix
	Type Definitions
	Functions for ANF Conversion
	Functions for Type Inference
	Functions for Compiling

