RANJIT JHALA, ERIC SEIDEL, NIKI VAZOU

PROGRAMMING WITH REFINEMENT TYPES

AN INTRODUCTION TO LIQUIDHASKELL
Contents

1 Introduction 13

Well-Typed Programs Do Go Wrong 13

Refinement Types 15

Audience 15

Getting Started 15

Sample Code 16

2 Logic & SMT 17

Syntax 17

Semantics 18

Verification Conditions 20

Examples: Propositions 21

Examples: Arithmetic 23

Examples: Uninterpreted Function 24

Recap 25
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Boolean Measures</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Partial Functions</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Lifting Functions to Measures</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>A Safe List API</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Recap</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>Numeric Measures</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Wholemeal Programming</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Specifying List Dimensions</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Lists: Size Preserving API</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Lists: Size Reducing API</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Dimension Safe Vector API</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Dimension Safe Matrix API</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Recap</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td>Elemental Measures</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Talking about Sets</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Proving QuickCheck Style Properties</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Content-Aware List API</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Permutations</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Uniqueness</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Unique Zippers</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Recap</td>
<td>86</td>
</tr>
</tbody>
</table>
8 Case Study: Okasaki’s Lazy Queues 87

Queues 87
Sized Lists 89
Queue Type 91
Queue Operations 91
Recap 93

9 Case Study: Associative Maps 95

Specifying Maps 95
Using Maps: Well Scoped Expressions 96
Implementing Maps: Binary Search Trees 100
Recap 104

10 Case Study: Pointers & Bytes 105

HeartBleeds in Haskell 105
Low-level Pointer API 106
A Refined Pointer API 108
Assumptions vs Guarantees 111
ByteString API 111
Application API 116
Nested ByteStrings 117
Recap: Types Against Overflows 119
<table>
<thead>
<tr>
<th>Case Study: AVL Trees</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVL Trees</td>
<td>121</td>
</tr>
<tr>
<td>Specifying AVL Trees</td>
<td>122</td>
</tr>
<tr>
<td>Smart Constructors</td>
<td>124</td>
</tr>
<tr>
<td>Inserting Elements</td>
<td>125</td>
</tr>
<tr>
<td>Rebalancing Trees</td>
<td>126</td>
</tr>
<tr>
<td>Refactoring Rebalance</td>
<td>131</td>
</tr>
<tr>
<td>Deleting Elements</td>
<td>133</td>
</tr>
<tr>
<td>Functional Correctness</td>
<td>134</td>
</tr>
</tbody>
</table>
List of Exercises

<table>
<thead>
<tr>
<th>Section</th>
<th>Exercise Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Exercise (Implications and Or)</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Exercise (DeMorgan’s Law)</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Exercise (Addition and Order)</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Exercise (List Average)</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Exercise (Propositions)</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Exercise (Assertions)</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Exercise (Vector Head)</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Exercise (Unsafe Lookup)</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Exercise (Safe Lookup)</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>Exercise (Guards)</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Exercise (Absolute Sum)</td>
<td>39</td>
</tr>
<tr>
<td>4.6</td>
<td>Exercise (Off by one?)</td>
<td>39</td>
</tr>
<tr>
<td>4.7</td>
<td>Exercise (Using Higher-Order Loops)</td>
<td>40</td>
</tr>
<tr>
<td>4.8</td>
<td>Exercise (Dot Product)</td>
<td>41</td>
</tr>
<tr>
<td>4.9</td>
<td>Exercise (Sanitization)</td>
<td>44</td>
</tr>
<tr>
<td>4.10</td>
<td>Exercise (Addition)</td>
<td>45</td>
</tr>
<tr>
<td>4.11</td>
<td>Exercise (Insertion Sort)</td>
<td>46</td>
</tr>
<tr>
<td>4.12</td>
<td>Exercise (QuickSort)</td>
<td>47</td>
</tr>
<tr>
<td>4.13</td>
<td>Exercise (Duplicates)</td>
<td>49</td>
</tr>
<tr>
<td>4.14</td>
<td>Exercise (Delete)</td>
<td>50</td>
</tr>
<tr>
<td>4.15</td>
<td>Exercise (Safely Deleting Minimum)</td>
<td>50</td>
</tr>
<tr>
<td>4.16</td>
<td>Exercise (BST Sort)</td>
<td>50</td>
</tr>
</tbody>
</table>
5.1 Exercise (Average, Maybe) 55
5.2 Exercise (Debugging Specifications) 55
5.3 Exercise (Safe Head) 56
5.4 Exercise (Weighted Average) 58
5.5 Exercise (Mitchell’s Risers) 58

6.1 Exercise (Map) .. 64
6.2 Exercise (Reverse) 64
6.3 Exercise (Zip Unless Empty) 65
6.4 Exercise (Drop) .. 66
6.5 Exercise (Take it easy) 66
6.6 Exercise (QuickSort) 67
6.7 Exercise (Vector Constructor) 69
6.8 Exercise (Flatten) 69
6.9 Exercise (Legal Matrix) 71
6.10 Exercise (Matrix Constructor) 71
6.11 Exercise (Refined Matrix Constructor) 71
6.12 Exercise (Matrix Transpose) 72

7.1 Exercise (Bounded Addition) 77
7.2 Exercise (Set Difference) 78
7.3 Exercise (Reverse) 79
7.4 Exercise (Halve) 80
7.5 Exercise (Membership) 80
7.6 Exercise (Merge) 81
7.7 Exercise (Merge Sort) 81
7.8 Exercise (Filter) 83
7.9 Exercise (Reverse) 83
7.10 Exercise (Append) 84
7.11 Exercise (Range) 84
7.12 Exercise (Deconstructing Zippers) 85

8.1 Exercise (Destructing Lists) 90
1

Introduction

One of the great things about Haskell is its brainy type system that allows one to enforce a variety of invariants at compile time, thereby nipping in the bud a large swathe of run-time errors.

Well-Typed Programs Do Go Wrong

Alas, well-typed programs do go quite wrong, in a variety of ways.

Division by Zero This innocuous function computes the average of a list of integers:

```haskell
average :: [Int] -> Int
average xs \= sum xs \div length xs
```

We get the desired result on a non-empty list of numbers:

```
ghci\> average [10, 20, 30, 40]
25
```

However, if we call it with an empty list, we get a rather unpleasant crash: ¹

```
ghci\> average []
*** Exception: divide by zero
```

Missing Keys Associative key-value maps are the new lists; they come “built-in” with modern languages like Go, Python, JavaScript and Lua; and of course, they’re widely used in Haskell too.

¹ We could write `average` more defensively, returning a `Maybe` or `Either` value. However, this merely kicks the can down the road. Ultimately, we will want to extract the `Int` from the `Maybe` and if the inputs were invalid to start with, then at that point we’d be stuck.
14 programming with refinement types

ghci> :m + Data.Map
ghci> let m = fromList [("haskell", "lazy")
 , ("ocaml", "eager")]

ghci> m ! "haskell"
"lazy"

Alas, maps are another source of vexing errors that are tickled when we try to find the value of an absent key: ²

ghci> m ! "javascript"
"*** Exception: key is not in the map

SEGMENTATION FAULTS Say what? How can one possibly get a segmentation fault with a safe language like Haskell. Well, here’s the thing: every safe language is built on a foundation of machine code, or at the very least, C. Consider the ubiquitous vector library:

ghci> :m + Data.Vector
ghci> let v = fromList ["haskell", "ocaml"]
ghci> unsafeIndex v 0
"haskell"

However, invalid inputs at the safe upper levels can percolate all the way down and stir a mutiny down below: ³

ghci> unsafeIndex v 3
'ghci' terminated by signal SIGSEGV ...

HEART BLEEDS Finally, for certain kinds of programs, there is a fate worse than death. text is a high-performance string processing library for Haskell, that is used, for example, to build web services.

ghci> :m + Data.Text Data.Text.Unsafe
ghci> let t = pack "Voltage"
ghci> takeWord16 5 t
"Volta"

A cunning adversary can use invalid, or rather, well-crafted, inputs that go well outside the size of the given text to read extra bytes and thus extract secrets without anyone being any the wiser.

ghci> takeWord16 20 t
"Voltage\1912\3148\SOH\NUL\15928\2486\SOH\NUL"

The above call returns the bytes residing in memory immediately after the string Voltage. These bytes could be junk, or could be either the name of your favorite TV show, or, more worryingly, your bank account password.

* Again, one could use a Maybe but it’s just deferring the inevitable.

³ Why use a function marked unsafe? Because it’s very fast! Furthermore, even if we used the safe variant, we’d get a run-time exception which is only marginally better. Finally, we should remember to thank the developers for carefully marking it unsafe, because in general, given the many layers of abstraction, it is hard to know which functions are indeed safe.
Refinement Types

Refinement types allow us to enrich Haskell’s type system with *predicates* that precisely describe the sets of *valid* inputs and outputs of functions, values held inside containers, and so on. These predicates are drawn from special *logics* for which there are fast *decision procedures* called SMT solvers.

By combining types with predicates you can specify *contracts* which describe valid inputs and outputs of functions. The refinement type system *guarantees at compile-time* that functions adhere to their contracts. That is, you can rest assured that the above calamities *cannot occur at run-time*.

LiquidHaskell is a Refinement Type Checker for Haskell, and in this tutorial we’ll describe how you can use it to make programs better and programming even more fun.

Audience

Do you

• know a bit of basic arithmetic and logic?

• know the difference between a *nand* and an *xor*?

• know any typed languages e.g. ML, Haskell, Scala, F# or (Typed) Racket?

• know what `forall a. a -> a` means?

• like it when your code editor politely points out infinite loops?

• like your programs to not have bugs?

Then this tutorial is for you!

Getting Started

First things first; lets see how to install and run LiquidHaskell.

LiquidHaskell requires (in addition to the cabal dependencies) binary for an SMTLIB2 compatible solver, e.g. one of

• `Z3`

• `CVC4`
• **MathSat**

To **install** LiquidHaskell, just do:

```bash
$ cabal install liquidhaskell
```

Command Line execution simply requires you type:

```bash
$ liquid /path/to/file.hs
```

You will see a report of **SAFE** or **UNSAFE** together with type errors at various points in the source.

Emacs and **Vim** have LiquidHaskell plugins, which run **liquid** in the background as you edit any Haskell file, highlight errors, and display the inferred types, all of which we find to be extremely useful. Hence we **strongly recommend** these over the command line option.

• Emacs’ *flycheck* plugin is described [here](#)

• Vim’s *syntastic* checker is described [here](#)

• Spacemacs’ *flycheck* layer described [here](#)

Sample Code

This tutorial is written in literate Haskell and the code for it is available [here](#). We **strongly** recommend you grab the code, and follow along, and especially that you do the exercises.

```bash
$ git clone https://github.com/ucsd-progsys/liquidhaskell-tutorial.git
$ cd liquidhaskell-tutorial/src
```

If you’d like to copy and paste code snippets instead of cloning the repo, note that you may need to pass "--no-termination" to **liquid**, or equivalently, add the pragma `{-@ LIQUID "--no-termination" @-}` to the top of the source file. (By default, **liquid** tries to ensure that all code it examines will terminate. Some of the code in this tutorial is written in such a way that termination is not immediately obvious to **liquid**.)

Note: This tutorial is a *work in progress*, and we will be **very** grateful for feedback and suggestions, ideally via pull-requests on github. Let’s begin!
As we shall see shortly, a refinement type is:

\[\text{Refinement Types} = \text{Types} + \text{Logical Predicates} \]

Let us begin by quickly recalling what we mean by “logical predicates” in the remainder of this tutorial. To this end, we will describe syntax, that is, what predicates look like, and semantics, which is a fancy word for what predicates mean.

Syntax

A logical predicate is, informally speaking, a Boolean valued term drawn from a restricted subset of Haskell. In particular, the expressions are drawn from the following grammar comprising constants, expressions and predicates.

A Constant\(^2\) \(c\) is simply one of the numeric values:

\[c := 0, 1, 2, \ldots \]

A Variable \(v\) is one of \(x, y, z\), etc., these will refer to (the values of) binders in our source programs.

\[v := x, y, z, \ldots \]

An Expression \(e\) is one of the following forms; that is, an expression is built up as linear arithmetic expressions over variables and constants and uninterpreted function applications.

\[
\begin{align*}
e & := v & \quad \text{-- variable} \\
& \mid c & \quad \text{-- constant} \\
& \mid e + e & \quad \text{-- addition} \\
& \mid e - e & \quad \text{-- subtraction} \\
& \mid c * e & \quad \text{-- linear multiply} \\
& \mid v \, e1 \, e2 \ldots \, en & \quad \text{-- uninterpreted function application}
\end{align*}
\]
Examples of Expressions include the following:

- \(x + y = z \)
- \(2 * x \)
- \(1 + \text{size} \ x \)

A Relation is one of the usual (arithmetic) comparison operators:

\[
\begin{align*}
 r &:= == \quad \text{-- equality} \\
 | &:= /= \quad \text{-- disequality} \\
 | &:= >= \quad \text{-- greater than or equal} \\
 | &:= <= \quad \text{-- less than or equal} \\
 | &:= > \quad \text{-- greater than} \\
 | &:= < \quad \text{-- less than}
\end{align*}
\]

A Predicate is either an atomic predicate, obtained by comparing two expressions, or, an application of a predicate function to a list of arguments, or the Boolean combination of the above predicates with the operators `&` (and), `|` (or), `=>` (implies \(^3\)), `<=>` (if and only if \(^4\)), and `not`.

\[
\begin{align*}
p &:= \text{true} \\
&| \text{false} \\
&| \text{ere} \quad \text{-- atomic binary relation} \\
&| v \text{e1 e2 ... en} \quad \text{-- predicate application} \\
&| p &\& p \quad \text{-- and} \\
&| p || p \quad \text{-- or} \\
&| p => p \quad \text{-- implies} \\
&| p <=> p \quad \text{-- if and only if} \\
&| \text{not} p \quad \text{-- negation}
\end{align*}
\]

Examples of Predicates include the following:

- \(x + y \leq 3 \)
- \(\text{null} \ x \)
- \(x < 10 \Rightarrow y < 10 \Rightarrow x + y < 20 \)
- \(0 < x + y \Rightarrow 0 < y + x \)

Semantics

The syntax of predicates tells us what they look like, that is, what we can write down as valid predicates. Next, let us turn our attention
to what a predicate means. Intuitively, a predicate is just a Boolean valued Haskell function with &&, ||, not being the usual operators and =>= and <= being two special operators.

The Implication operator => is equivalent to the following Haskell function. (For now, ignore the signature: it just says the output is a Bool that is equal to the logical implication between the inputs p and q.)

\[
\{\neg (\Rightarrow) :: p:\text{Bool} \to q:\text{Bool} \to \{v:\text{Bool} \mid v \Leftarrow (p \Rightarrow q]\} \Rightarrow\}
\]

<table>
<thead>
<tr>
<th>(\text{False} \Rightarrow \text{False})</th>
<th>(\text{True})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{False})</td>
<td>(\text{True})</td>
</tr>
<tr>
<td>(\text{False})</td>
<td>(\text{True})</td>
</tr>
<tr>
<td>(\text{True})</td>
<td>(\text{True})</td>
</tr>
<tr>
<td>(\text{True})</td>
<td>(\text{False})</td>
</tr>
</tbody>
</table>

The If-and-only-if operator <=> is equivalent to the Haskell function:

\[
\{\neg (\Leftarrow) :: p:\text{Bool} \to q:\text{Bool} \to \{v:\text{Bool} \mid v \Leftarrow (p \Leftarrow q]\} \Leftarrow\}
\]

<table>
<thead>
<tr>
<th>(\text{False} \Leftarrow \text{False})</th>
<th>(\text{True})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{False})</td>
<td>(\text{True})</td>
</tr>
<tr>
<td>(\text{False})</td>
<td>(\text{False})</td>
</tr>
<tr>
<td>(\text{True})</td>
<td>(\text{True})</td>
</tr>
<tr>
<td>(\text{True})</td>
<td>(\text{False})</td>
</tr>
</tbody>
</table>

An Environment is a mapping from variables to their Haskell types. For example, let \(G\) be an environment defined as

\[
\begin{align*}
x &: \text{Int} \\
y &: \text{Int} \\
z &: \text{Int}
\end{align*}
\]

which maps each variable \(x\), \(y\) and \(z\) to the type Int.

An Assignment under an environment, is a mapping from variables to values of the type specified in the environment. For example,

\[
\begin{align*}
x &= 1 \\
y &= 2 \\
z &= 3
\end{align*}
\]

is an assignment under \(G\) that maps \(x\), \(y\) and \(z\) to the Int values 1, 2 and 3 respectively.

A Predicate Evaluates to either \(\text{True}\) or \(\text{False}\) under a given assignment. For example, the predicate

\[\neg (\Rightarrow) :: \text{Bool} \to \text{Bool} \to \{v:\text{Bool} \mid v \Leftarrow (p \Rightarrow q]\} \Rightarrow\]

\[\{\neg (\Leftarrow) :: \text{Bool} \to \text{Bool} \to \{v:\text{Bool} \mid v \Leftarrow (p \Leftarrow q]\} \Leftarrow\]

\[\text{An observant reader may notice that} \quad \Leftarrow\text{ is the same as} \Rightarrow\text{ if the arguments} \quad \text{are of type} \text{Bool} \]

\[\text{An observant reader may notice that} \quad \Leftarrow\text{ is the same as} \Rightarrow\text{ if the arguments} \quad \text{are of type} \text{Bool} \]
x + y > 10

evaluates to False given the above assignment but evaluates to True under the assignment

x := 10
y := 10
z := 20

A Predicate is Satisfiable in an environment if there exists an assignment (in that environment) that makes the predicate evaluate to True. For example, in G the predicate

x + y == z

is satisfiable, as the above assignment makes the predicate evaluate to True.

A Predicate is Valid in an environment if every assignment in that environment makes the predicate evaluate to True. For example, the predicate

x < 10 || x == 10 || x > 10

is valid under G as no matter what value we assign to x, the above predicate will evaluate to True.

Verification Conditions

LiquidHaskell works without actually executing your programs. Instead, it checks that your program meets the given specifications in roughly two steps.

1. First, LH combines the code and types down to a set of Verification Conditions (VC) which are predicates that are valid only if your program satisfies a given property. 6

2. Next, LH queries an SMT solver to determine whether these VCs are valid. If so, it says your program is safe and otherwise it rejects your program.

The SMT Solver decides whether a predicate (VC) is valid without enumerating and evaluating all assignments. Indeed, it is impossible to do so as there are usually infinitely many assignments once the predicates refer to integers or lists and so on. Instead, the SMT solver uses a variety of sophisticated symbolic algorithms to deduce whether a predicate is valid or not. This process is the result of decades.

6 The process is described at length in this paper
of work in mathematical logic and decision procedures; the Ph.D thesis of Greg Nelson is an excellent place to learn more about these beautiful algorithms.

We restrict the logic to ensure that all our VC queries fall within the decidable fragment. This makes LiquidHaskell extremely automatic – there is no explicit manipulation of proofs, just the specification of properties via types and of course, the implementation via Haskell code! This automation comes at a price: all our refinements must belong to the logic above. Fortunately, with a bit of creativity, we can say a lot in this logic.

Examples: Propositions

Finally, let’s conclude this quick overview with some examples of predicates, in order to build up our own intuition about logic and validity. Each of the below is a predicate from our refinement logic. However, we write them as raw Haskell expressions that you may be more familiar with right now, and so that we can start to use LiquidHaskell to determine whether a predicate is indeed valid or not.

Let ‘TRUE’ be a refined type for Bool valued expressions that always evaluate to True. Similarly, we can define FALSE for Bool valued expressions that always evaluate to False:

\[- \text{type TRUE} = \{v: \text{Bool} | v\} \tag{\text{-}}\]
\[- \text{type FALSE} = \{v: \text{Bool} | \text{not } v\} \tag{\text{-}}\]

Thus, a valid predicate is one that has the type TRUE. The simplest example of a valid predicate is just True:

\[- \text{ex0 :: TRUE \text{-}}\]
\[\text{ex0} = \text{True}\]

of course, False is not valid

\[- \text{ex0’ :: TRUE \text{-}}\]
\[\text{ex0’} = \text{False}\]

We can get more interesting predicates if we use variables. For example, the following is valid predicate says that a Bool variable is either True or False.

\[- \text{\text{\# \text{-}}}\]
Of course, a variable cannot be both True and False, and so the below predicate is valid:

```haskell
{-@ ex2 :: Bool -> FALSE @-}
ex2 b = b && not b
```

The next few examples illustrate the => operator. You should read p => q as if p is true then q must also be true. Thus, the below predicates are valid as if both a and b are true, then well, a is true, and b is true.

```haskell
{-@ ex3 :: Bool -> Bool -> TRUE @-}
ex3 a b = (a && b) => a

{-@ ex4 :: Bool -> Bool -> TRUE @-}
ex4 a b = (a && b) => b
```

Exercise 2.1 (Implications and Or). Of course, if we replace the && with || the result is not valid. Can you shuffle the variables around – without changing the operators – to make the formula valid?

```haskell
{-@ ex3' :: Bool -> Bool -> TRUE @-}
ex3' a b = (a || b) => a
```

The following predicates are valid because they encode *modus ponens*: if you know that a implies b and you know that a is true, then it must be the case that b is also true:

```haskell
{-@ ex6 :: Bool -> Bool -> TRUE @-}
ex6 a b = (a && (a => b)) => b

{-@ ex7 :: Bool -> Bool -> TRUE @-}
ex7 a b = a => (a => b) => b
```

Recall that p <= q (read p if and only iff q) evaluates to True exactly when p and q evaluate to the same values (True or False). It is used to encode *equalities* between predicates. For example, we can write down De Morgan’s laws as the valid predicates:

```haskell
{-@ exDeMorgan :: Bool -> Bool -> TRUE @-}
exDeMorgan a b = not (a || b) <= (not a && not b)
```

Exercise 2.2 (DeMorgan’s Law). The following version of DeMorgan’s law is wrong. Can you fix it to get a valid formula?
Examples: Arithmetic

Next, let's look at some predicates involving arithmetic. The simplest ones don't have any variables, for example:

```haskell
{-# ax0 :: Int -> TRUE #-}
ax0 = 1 + 1 == 2
```

Again, a predicate that evaluates to False is not valid:

```haskell
{-# ax0' :: Int -> TRUE #-}
ax0' = 1 + 2 == 2
```

SMT Solvers determine Validity without enumerating assignments. For example, consider the predicate:

```haskell
{-# ax1 :: Int -> TRUE #-}
ax1 x = x < x + 1
```

It is trivially valid; as via the usual laws of arithmetic, it is equivalent to \(\theta < 1 \) which is \(\text{True} \) independent of the value of \(x \). The SMT solver is able to determine this validity without enumerating the infinitely many possible values for \(x \). This kind of validity checking lies at the heart of LiquidHaskell.

We can combine arithmetic and propositional operators, as shown in the following examples:

```haskell
{-# ax2 :: Int -> TRUE #-}
ax2 x = (x < \theta) == (\theta <= \theta - x)
```

```haskell
{-# ax3 :: Int -> Int -> TRUE #-}
ax3 x y = (\theta <= x) == (\theta <= y) == (\theta <= x + y)
```

```haskell
{-# ax4 :: Int -> Int -> TRUE #-}
ax4 x y = (x == y - 1) == (x + 2 == y + 1)
```

```haskell
{-# ax5 :: Int -> Int -> Int -> TRUE #-}
ax5 x y z =
  (x <= \theta && x >= \theta)
  == (y == x + z)
  == (y == z)
```
Exercise 2.3 (Addition and Order). The formula below is not valid. Do you know why? Change the hypothesis i.e. the thing to the left of the \Rightarrow to make it a valid formula.

\[-\top \ ax6 :: \text{Int} \rightarrow \text{Int} \rightarrow \text{TRUE} \top\]

\[\text{ax6} \ x \ y = \text{True} \Rightarrow (x \leq x + y)\]

Examples: Uninterpreted Function

We say that function symbols are uninterpreted in the refinement logic, because the SMT solver does not “know” how functions are defined. Instead, the only thing that the solver knows is the axiom of congruence which states that any function f, returns equal outputs when invoked on equal inputs.

Let us define an uninterpreted function from Int to Int:

\[-\top \ measure \ f :: \text{Int} \rightarrow \text{Int} \top\]

We Test the Axiom of Congruence by checking that the following predicate is valid:

\[-\top \ congruence :: \text{Int} \rightarrow \text{Int} \rightarrow \text{TRUE} \top\]

\[\text{congruence} \ x \ y = (x = y) \Rightarrow (f \ x = f \ y)\]

Again, remember we are not evaluating the code above; indeed we cannot evaluate the code above because we have no definition of f. Still, the predicate is valid as the congruence axiom holds for any possible interpretation of f.

Here is a fun example; can you figure out why this predicate is indeed valid? (The SMT solver can...)

\[-\top \ fx1 :: \text{Int} \rightarrow \text{TRUE} \top\]

\[\text{fx1} \ x = \begin{cases} (x = f \ (f \ (f \ x))) & \Rightarrow (x = f \ (f \ (f \ (f \ x)))) \\ (x = f \ x) & \Rightarrow (x = f \ x) \end{cases}\]

To get a taste of why uninterpreted functions will prove useful lets write a function to compute the size of a list:

\[-\top \ measure \ size \top\]

\[\text{size} :: [a] \rightarrow \text{Int}\]

\[\text{size} [] = 0\]

\[\text{size} \ (x:xs) = 1 + \text{size} \ xs\]

We can now verify that the following predicates are valid:
\{-a\ f x 0 : [a] -> [a] -> TRUE \-\}
\text{fx0 xs ys = (xs == ys) => (size xs == size ys)}

Note that to determine that the above is valid, the SMT solver does not need to know the meaning or interpretation of size – merely that it is a function. When we need some information about the definition, of size we will put it inside the predicate. For example, in order to prove that the following is valid:

\{-a\ f x 2 : a -> [a] -> TRUE \-\}
\text{fx2 x xs = \(0 < \text{size ys}\)}

\text{where}
\text{ys = x : xs}

LiquidHaskell actually asks the SMT solver to prove the validity of a VC predicate which states that sizes are non-negative and that since ys equals x:xs, the size of ys is one more than xs. 9

\{-a\ f x 2 VC : _ -> _ -> _ -> TRUE \-\}
\text{fx2VC x xs ys = (0 \leq \text{size xs})}
\quad \Rightarrow (\text{size ys} == 1 + \text{size xs})
\quad \Rightarrow (0 < \text{size ys})

Fear not! We will describe how this works soon

\text{Recap}

This chapter describes exactly what we, for the purposes of this book, mean by the term \textit{logical predicate}.

1. We defined a grammar – a restricted subset of Haskell corresponding to \texttt{Bool} valued expressions.

2. The restricted grammar lets us use SMT solvers to decide whether a predicate is \textit{valid} that is, evaluates to \texttt{True} for \textit{all} values of the variables.

3. Crucially, the SMT solver determines validity \textit{without enumerating} and evaluating the predicates (which would take forever!) but instead by using clever symbolic algorithms.

Next, let’s see how we can use logical predicates to \textit{specify} and \textit{verify} properties of real programs.
3

Refinement Types

What is a Refinement Type? In a nutshell,

\[\text{Refinement Types} = \text{Types} + \text{Predicates} \]

That is, refinement types allow us to decorate types with logical predicates, which you can think of as boolean-valued Haskell expressions, that constrain the set of values described by the type. This lets us specify sophisticated invariants of the underlying values.

Defining Types

Let us define some refinement types:\(^1\)

\[
\{-@ \text{type Zero}@\} \text{Zero} = \{v : \text{Int} \mid v = _0\} \\
\{-@ \text{type NonZero}@\} \text{NonZero} = \{v : \text{Int} \mid v \neq _0\}
\]

The Value Variable \(v\) denotes the set of valid inhabitants of each refinement type. Hence, \text{Zero} describes the set of \text{Int} values that are equal to _0, that is, the singleton set containing just _0, and \text{NonZero} describes the set of \text{Int} values that are \text{not} equal to _0, that is, the set \{1, -1, 2, -2, \ldots\} and so on. \(^2\)

To use these types we can write:

\[
\{-@ \text{zero} :: \text{Zero}@\}
\text{zero} = _0 :: \text{Int}
\]

\[
\{-@ \text{one, two, three} :: \text{NonZero}@\}
\text{one} = 1 :: \text{Int} \\
\text{two} = 2 :: \text{Int} \\
\text{three} = 3 :: \text{Int}
\]

\(^1\) You can read the type of \text{Zero} as: “\text{v is an Int such that v equals 0}” and \text{NonZero} as : “\text{v is an Int such that v does not equal 0}”

\(^2\) We will use @-marked comments to write refinement type annotations in the Haskell source file, making these types, quite literally, machine-checked comments!
Errors

If we try to say nonsensical things like:

```haskell
nonsense = one'
    where
        {-@ one' :: Zero @-}
    one' = 1 :: Int
```

LiquidHaskell will complain with an error message:

```text
../liquidhaskell-tutorial/src/03-basic.lhs:72:3-6: Error: Liquid Type Mismatch

72 | one' = 1 :: Int
    ^^^^^

Inferred type
    VV : {VV : Int | VV == (1 : int)}

not a subtype of Required type
    VV : {VV : Int | VV == 0}
```

The message says that the expression `1 :: Int` has the type

```
{v:Int | v == 1}
```

which is *not* (a subtype of) the *required* type

```
{v:Int | v == 0}
```
as 1 is not equal to 0.

Subtyping

What is this business of *subtyping*? Suppose we have some more refinements of `Int`

```
{-@ type Nat     = {v:Int | 0 <= v} @-}
{-@ type Even    = {v:Int | v mod 2 == 0} @-}
{-@ type Lt100   = {v:Int | v < 100} @-}
```

What is the type of `zero`? Zero of course, but also `Nat`:

```
{-@ zero' :: Nat @-}
zero'     = zero
```

and also `Even`:
Subtyping and Implication Zero is the most precise type for \(0::\text{Int}\), as it is a subtype of \(\text{Nat}\), Even and \(\text{Lt100}\). This is because the set of values defined by Zero is a subset of the values defined by Nat, Even and Lt100, as the following logical implications are valid:

1. \(v = 0 \Rightarrow 0 \leq v\)
2. \(v = 0 \Rightarrow v \mod 2 = 0\)
3. \(v = 0 \Rightarrow v < 100\)

In Summary the key points about refinement types are:

1. A refinement type is just a type decorated with logical predicates.
2. A term can have different refinements for different properties.
3. When we erase the predicates we get the standard Haskell types.\(^4\)

Writing Specifications

Let’s write some more interesting specifications.

Typing Dead Code We can wrap the usual error function in a function die with the type:

\[
\{-@ \text{die} :: \{v: \text{String} | \text{false}\} \rightarrow a \rightarrow\}\]

\[
\text{die \hspace{1mm} msg} = \text{error \hspace{1mm} msg}
\]

The interesting thing about die is that the input type has the refinement false, meaning the function must only be called with Strings that satisfy the predicate false. This seems bizarre; isn’t it impossible to satisfy false? Indeed! Thus, a program containing die typechecks only when LiquidHaskell can prove that die is never called. For example, LiquidHaskell will accept

\[
\text{cannotDie} = \text{if} \hspace{1mm} 1 + 1 = 3 \hspace{1mm} \text{then} \hspace{1mm} \text{die \hspace{1mm} “horrible death”} \hspace{1mm} \text{else} \hspace{1mm} ()
\]

\(^3\) We use a different names zero’, zero” etc. as (currently) LiquidHaskell supports at most one refinement type for each top-level name.

\(^4\) Dually, a standard Haskell type has the trivial refinement true. For example, Int is equivalent to \(\{v: \text{Int} | \text{true}\}\).
by inferring that the branch condition is always \texttt{False} and so \texttt{die} cannot be called. However, LiquidHaskell will \textit{reject}

\begin{verbatim}
canDie = if 1 + 1 == 2
 then die "horrible death"
 else ()
\end{verbatim}

as the branch may (will!) be \texttt{True} and so \texttt{die} can be called.

\textit{Refining Function Types: Pre-conditions}

Let’s use \texttt{die} to write a \textit{safe division} function that \textit{only accepts} non-zero denominators.

\begin{verbatim}
divide' :: Int -> Int -> Int
divide' n 0 = die "divide by zero"
divide' n d = n `div` d
\end{verbatim}

From the above, it is clear to us that \texttt{div} is only called with non-zero divisors. However, LiquidHaskell reports an error at the call to \texttt{"die"} because, what if \texttt{divide'} is actually invoked with a 0 divisor?

We can specify that will not happen, with a \textit{pre-condition} that says that the second argument is non-zero:

\begin{verbatim}
{-@ divide :: Int -> NonZero -> Int @-}
divide _ 0 = die "divide by zero"
divide n d = n `div` d
\end{verbatim}

To \textbf{Verify} that \texttt{divide} never calls \texttt{die}, LiquidHaskell infers that "divide by zero" is not merely of type \texttt{String}, but in fact has the the refined type \{\texttt{v:String \mid false}\} \textit{in the context} in which the call to \texttt{die} occurs. LiquidHaskell arrives at this conclusion by using the fact that in the first equation for \texttt{divide} the \textit{denominator} is in fact

\begin{verbatim}
0 :: {v: Int \mid v == 0}
\end{verbatim}

which \textit{contradicts} the pre-condition (i.e. input) type. Thus, by contradiction, LiquidHaskell deduces that the first equation is \textit{dead code} and hence \texttt{die} will not be called at run-time.

\textbf{Establishing Pre-conditions} The above signature forces us to ensure that that when we use \texttt{divide}, we only supply provably \texttt{NonZero} arguments. Hence, these two uses of \texttt{divide} are fine:
Exercise 3.1 (List Average). Consider the function `avg`:

1. Why does LiquidHaskell flag an error at `n`?
2. How can you change the code so LiquidHaskell verifies it?

```haskell
avg :: [Int] -> Int
avg xs = divide total n
  where
    total = sum xs
    n = length xs
```

Refining Function Types: Post-conditions

Next, let's see how we can use refinements to describe the outputs of a function. Consider the following simple absolute value function

```haskell
abs :: Int -> Int
abs n
  | 0 < n = n
  | otherwise = 0 - n
```

We can use a refinement on the output type to specify that the function returns non-negative values

```
{-@ abs :: Int -> Nat @-}
```

LiquidHaskell verifies that `abs` indeed enjoys the above type by deducing that `n` is trivially non-negative when `0 < n` and that in the otherwise case, the value `0 - n` is indeed non-negative.

Testing Values: Booleans and Propositions

In the above example, we compute a value that is guaranteed to be a `Nat`. Sometimes, we need to test if a value satisfies some property, e.g., is `NonZero`. For example, let's write a command-line calculator:

```haskell
calc = do
  putStrLn "Enter numerator"
  n <- readLn
  putStrLn "Enter denominator"
  d <- readLn
  putStrLn (result n d)
calc
```
which takes two numbers and divides them. The function \texttt{result} checks if \texttt{d} is strictly positive (and hence, non-zero), and does the division, or otherwise complains to the user:

\begin{verbatim}
result n d
 | isPositive d = "Result = " ++ show (n `divide` d)
 | otherwise = "Humph, please enter positive denominator!"
\end{verbatim}

Finally, \texttt{isPositive} is a test that returns a \texttt{True} if its input is strictly greater than \texttt{0} or \texttt{False} otherwise:

\begin{verbatim}
isPositive :: Int -> Bool
isPositive x = x > 0
\end{verbatim}

To verify the call to \texttt{divide} inside \texttt{result} we need to tell Liquid-Haskell that the division only happens with a \texttt{NonZero} value \texttt{d}. However, the non-zero-ness is established via the \texttt{test} that occurs inside the guard \texttt{isPositive d}. Hence, we require a \texttt{post-condition} that states that \texttt{isPositive} only returns \texttt{True} when the argument is positive:

\begin{verbatim}
{-@ isPositive :: x:Int -> {v:Bool | v <-> x > 0} @-}
\end{verbatim}

In the above signature, the output type (post-condition) states that \texttt{isPositive x} returns \texttt{True} if and only if \texttt{x} was in fact strictly greater than \texttt{0}. In other words, we can write post-conditions for plain-old \texttt{Bool}-valued \texttt{tests} to establish that user-supplied values satisfy some desirable property (here, \texttt{Pos} and hence \texttt{NonZero}) in order to then safely perform some computation on it.

\textbf{Exercise 3.2 (Propositions).} \textit{What happens if you delete the type for \texttt{isPositive} \texttt{}? Can you change the type for \texttt{isPositive} (i.e. write some other type) while preserving safety?}

\textbf{Exercise 3.3 (Assertions).} \textit{Consider the following \texttt{assert} function, and two use sites. Write a suitable refinement type signature for \texttt{lAssert} so that \texttt{lAssert} and \texttt{yes} are accepted but \texttt{no} is rejected.}

\begin{verbatim}
{-@ lAssert :: Bool -> a -> a @-}
lAssert True x = x
lAssert False _ = die "yikes, assertion fails!"
\end{verbatim}

\texttt{yes} = \texttt{lAssert \ (1 + 1 == 2) ()}
\texttt{no} = \texttt{lAssert \ (1 + 1 == 3) ()}

\textit{Hint:} You need a pre-condition that \texttt{lAssert} is only called with \texttt{True}.

Putting It All Together

Let's wrap up this introduction with a simple truncate function that connects all the dots.

```haskell
truncate :: Int -> Int -> Int
truncate i max
  | i' <= max' = i
  | otherwise = max' * (i `divide` i')
where
  i'  = abs i
  max' = abs max
```

The expression `truncate i n` evaluates to `i` when the absolute value of `i` is less than the upper bound `max`, and otherwise truncates the value at the maximum `n`. LiquidHaskell verifies that the use of divide is safe by inferring that:

1. `max' < i'` from the branch condition,
2. `0 <= i'` from the abs post-condition, and
3. `0 <= max'` from the abs post-condition.

From the above, LiquidHaskell infers that `i' /= 0`. That is, at the call site `i' :: NonZero`, thereby satisfying the pre-condition for `divide` and verifying that the program has no pesky divide-by-zero errors.

Recap

This concludes our quick introduction to Refinement Types and LiquidHaskell. Hopefully you have some sense of how to

1. **Specify** fine-grained properties of values by decorating their types with logical predicates.
2. **Encode** assertions, pre-conditions, and post-conditions with suitable function types.
3. **Verify** semantic properties of code by using automatic logic engines (SMT solvers) to track and establish the key relationships between program values.
4
Polymorphism

Refinement types shine when we want to establish properties of polymorphic datatypes and higher-order functions. Rather than be abstract, let’s illustrate this with a classic use-case.

Array Bounds Verification aims to ensure that the indices used to retrieve values from an array are indeed valid for the array, i.e. are between 0 and the size of the array. For example, suppose we create an array with two elements:

twoLangs = fromList ["haskell", "javascript"]

Let’s attempt to look it up at various indices:

eeks = [ok, yup, nono]

<table>
<thead>
<tr>
<th>where</th>
</tr>
</thead>
<tbody>
<tr>
<td>ok = twoLangs ! 0</td>
</tr>
<tr>
<td>yup = twoLangs ! 1</td>
</tr>
<tr>
<td>nono = twoLangs ! 3</td>
</tr>
</tbody>
</table>

If we try to run the above, we get a nasty shock: an exception that says we’re trying to look up twoLangs at index 3 whereas the size of twoLangs is just 2.

Prelude> :l 03-poly.lhs
[1 of 1] Compiling VectorBounds (03-poly.lhs, interpreted)
Ok, modules loaded: VectorBounds.
*VectorBounds> eeks
Loading package ... done.
"*** Exception: ./Data/Vector/Generic.hs:249 ((!)): index out of bounds (3,2)

In a suitable Editor e.g. Vim or Emacs, or if you push the “play” button in the online demo, you will literally see the error without running the code. Let’s see how LiquidHaskell checks ok and yup but flags nono, and along the way, learn how it reasons about recursion, higher-order functions, data types and polymorphism.
Specification: Vector Bounds

First, let’s see how to specify array bounds safety by refining the types for the key functions exported by Data.Vector, i.e. how to

1. define the size of a Vector
2. compute the size of a Vector
3. restrict the indices to those that are valid for a given size.

Imports We can write specifications for imported modules – for which we lack the code – either directly in the client’s source file or better, in .spec files which can be reused across multiple client modules.

Include directories can be specified when checking a file. Suppose we want to check some file target.hs that imports an external dependency Data.Vector. We can write specifications for Data.Vector inside include/Data/Vector.spec which contains:

```hs
MM | define the size
measure vlen :: Vector a -> Int

MM | compute the size
assume length :: x:Vector a -> {v:Int | v = vlen x}

MM | lookup at an index
assume (!) :: x:Vector a -> {v: Nat | v < vlen x} -> a
```

Using this new specification is now a simple matter of telling LiquidHaskell to include this file:

```
$ liquid -i include/ target.hs
```

LiquidHaskell ships with specifications for Prelude, Data.List, and Data.Vector which it includes by default.

Measures are used to define properties of Haskell data values that are useful for specification and verification. Think of vlen as the actual size of a Vector regardless of how the size was computed.

Assumes are used to specify types describing the semantics of functions that we cannot verify e.g. because we don’t have the code for them. Here, we are assuming that the library function Data.Vector.length indeed computes the size of the input vector.
Furthermore, we are stipulating that the lookup function (!) requires an index that is between 0 and the real size of the input vector \(x \).

Dependent Refinements are used to describe relationships *between* the elements of a specification. For example, notice how the signature for `length` names the input with the binder \(x \) that then appears in the output type to constrain the output Int. Similarly, the signature for (!) names the input vector \(x \) so that the index can be constrained to be valid for \(x \). Thus, dependency lets us write properties that connect *multiple* program values.

Aliases are extremely useful for defining *abbreviations* for commonly occurring types. Just as we enjoy abstractions when programming, we will find it handy to have abstractions in the specification mechanism. To this end, LiquidHaskell supports *type aliases*. For example, we can define Vectors of a given size \(N \) as:

```haskell
{-@ type vectorN a N = {v:Vector a | vlen v == N} @-}
```

and now use this to type `twoLangs` above as:

```haskell
{-@ twoLangs :: VectorN String 2 @-}
twoLangs = fromList ["haskell", "javascript"]
```

Similarly, we can define an alias for Int values between \(Lo \) and \(Hi \):

```haskell
{-@ type btwnLoHi lo hi = {v:Int | lo <= v && v < hi} @-}
```

after which we can specify (!) as:

```haskell
(!) :: x:Vector a -> btwnLoHi (vlen x) -> a
```

Verification: Vector Lookup

Let’s try write some functions to sanity check the specifications. First, find the starting element – or head of a Vector

```haskell
head :: Vector a -> a
head vec = vec ! 0
```

When we check the above, we get an error:

```
src/03-poly.lhs:127:23: Error: Liquid Type Mismatch
Inferred type
  \( VV : \text{Int} | VV == ?a && VV == 0 \)
```
not a subtype of Required type

\[\text{VV : Int | VV} \geq 0 \&\& \text{VV} < \text{vlen vec} \]

In Context

\[\text{VV : Int | VV} = ?a \&\& \text{VV} = 0 \]
\[\text{vec : Vector a | 0} \leq \text{vlen vec} \]
\[?a : \text{Int | ?a} = (0 : \text{int}) \]

LiquidHaskell is saying that 0 is not a valid index as it is not between 0 and vlen vec. Say what? Well, what if vec had no elements! A formal verifier doesn’t make off by one errors.

To Fix the problem we can do one of two things.

1. **Require** that the input vec be non-empty, or

2. **Return** an output if vec is non-empty, or

Here’s an implementation of the first approach, where we define and use an alias NEVector for non-empty Vectors

```haskell
{-@ type NEVector a = {v:Vector a | 0 < vlen v} @-}

{-@ head' :: NEVector a -> a @-}
head' vec = vec ! 0
```

Exercise 4.1 (Vector Head). Replace the undefined with an implementation of head' which accepts all vectors but returns a value only when the input vec is not empty.

```haskell
head'' :: Vector a -> Maybe a
head'' vec = undefined
```

Exercise 4.2 (Unsafe Lookup). The function unsafeLookup is a wrapper around the (!) with the arguments flipped. Modify the specification for unsafeLookup so that the implementation is accepted by LiquidHaskell.

```haskell
{-@ unsafeLookup :: Int -> Vector a -> a @-}
unsafeLookup index vec = vec ! index
```

Exercise 4.3 (Safe Lookup). Complete the implementation of safeLookup by filling in the implementation of ok so that it performs a bounds check before the access.

```haskell
{-@ safeLookup :: Vector a -> Int -> Maybe a @-}
safeLookup x i
  | ok = Just (x ! i)
```
Inference: Our First Recursive Function

Ok, let’s write some code! Let’s start with a recursive function that adds up the values of the elements of an Int vector.

```
-- >>> vectorSum (fromList [1, -2, 3])
-- 2
vectorSum :: Vector Int -> Int
vectorSum vec = go 0 0
  where
    go acc i |
      i < sz = go (acc + (vec ! i)) (i + 1)
    | otherwise = acc
    sz = length vec
```

Exercise 4.4 (Guards). What happens if you replace the guard with \(i \leq sz \)?

Exercise 4.5 (Absolute Sum). Write a variant of the above function that computes the absoluteSum of the elements of the vector.

```
-- >>> absoluteSum (fromList [1, -2, 3])
-- 6
{-@ absoluteSum :: Vector Int -> Nat @} absoluteSum = undefined
```

Inference LiquidHaskell verifies `vectorSum` — or, to be precise, the safety of the vector accesses `vec ! i`. The verification works out because LiquidHaskell is able to automatically infer \(^1\)

\[\text{go} :: \text{Int} \to \{ v : \text{Int} \mid \emptyset \leq v \land v \leq sz \} \to \text{Int} \]

which states that the second parameter \(i \) is between \(\emptyset \) and the length of \(\text{vec} \) (inclusive). LiquidHaskell uses this and the test that \(i < \text{sz} \) to establish that \(i \) is between \(\emptyset \) and \(\text{vlen vec} \) to prove safety.

Exercise 4.6 (Off by one?). Why does the type of `go` have \(v \leq \text{sz} \) and not \(v < \text{sz} \)?

Higher-Order Functions: Bottling Recursion in a loop

Let’s refactor the above low-level recursive function into a generic higher-order loop.
We can now use loop to implement vectorSum:

```haskell
vectorsum' :: Vector Int -> Int
vectorsum' vec = loop 0 n 0 body
    where
        body i acc = acc + (vec ! i)
        n = length vec
```

Inference is a convenient option. LiquidHaskell finds:

```haskell
loop :: lo:Nat -> hi:{Nat|lo <= hi} -> a -> (Btwn lo hi -> a -> a) -> a
```

In English, the above type states that

- `lo` the loop lower bound is a non-negative integer
- `hi` the loop upper bound is a greater than `lo`,
- `f` the loop body is only called with integers between `lo` and `hi`.

It can be tedious to have to keep typing things like the above. If we wanted to make `loop` a public or exported function, we could use the inferred type to generate an explicit signature.

At the call `loop 0 n 0 body` the parameters `lo` and `hi` are instantiated with `0` and `n` respectively, which, by the way is where the inference engine deduces non-negativity. Thus LiquidHaskell concludes that `body` is only called with values of `i` that are `between 0` and `(vlen vec)`, which verifies the safety of the call `vec ! i`.

Exercise 4.7 (Using Higher-Order Loops). Complete the implementation of `absolutesum'` below. When you are done, what is the type that is inferred for body?

```haskell
-- >>> absolutesum' (fromList [1, -2, 3])
-- 6
{-@ absolutesum' :: Vector Int -> Nat @-}
absolutesum' vec = loop 0 n 0 body
    where
        n = length vec
        body i acc = undefined
Exercise 4.8 (Dot Product). The following uses `loop` to compute dot products. Why does LiquidHaskell flag an error? Fix the code or specification so that LiquidHaskell accepts it.

```haskell
-- >>> dotProduct (fromList [1,2,3]) (fromList [4,5,6])
-- 32
{-@ dotProduct :: x:Vector Int -> y:Vector Int -> Int @-}
dotProduct x y = loop ∅ sz ∅ body
 where
 sz = length x
 body i acc = acc + (x ! i) * (y ! i)
```

Refinements and Polymorphism

While the standard vector is great for dense arrays, often we have to manipulate sparse vectors where most elements are just 0. We might represent such vectors as a list of index-value tuples:

```haskell
{-@ type SparseN a N = [(Btwn ∅ N, a)] @-}
```

Implicitly, all indices other than those in the list have the value 0 (or the equivalent value for the type `a`).

The alias `SparseN` is just a shorthand for the (longer) type on the right, it does not define a new type. If you are familiar with the index-style length encoding e.g. as found in DML or Agda, then note that despite appearances, our Sparse definition is not indexed.

Sparse Products Let’s write a function to compute a sparse product

```haskell
{-@ sparseProduct :: x:Vector _ -> SparseN _ (vlen x) -> _ @-}
sparseProduct x y = go ∅ y
 where
 go n ((i,v):y') = go (n + (x!i) * v) y'
 go n [] = n
```

LiquidHaskell verifies the above by using the specification to conclude that for each tuple `(i, v)` in the list `y`, the value of `i` is within the bounds of the vector `x`, thereby proving `x ! i` safe.
Folds

The sharp reader will have undoubtedly noticed that the sparse product can be more cleanly expressed as a fold:

```haskell
foldl' :: (a -> b -> a) -> a -> [b] -> a
```

We can simply fold over the sparse vector, accumulating the sum as we go along.

```haskell
{-@ sparseProduct' :: x:Vector _ -> SparseN _ (vlen x) -> _ @-}
sparseProduct' x y = foldl' body 0 y
 where
 body sum (i, v) = sum + (x ! i) * v
```

LiquidHaskell digests this without difficulty. The main trick is in how the polymorphism of `foldl'` is instantiated.

1. GHC infers that at this site, the type variable `b` from the signature of `foldl'` is instantiated to the Haskell type `HintL aI`.

2. Correspondingly, LiquidHaskell infers that in fact `b` can be instantiated to the refined `Btwn P v Hvlen xIL aI`.

Thus, the inference mechanism saves us a fair bit of typing and allows us to reuse existing polymorphic functions over containers and such without ceremony.

Recap

This chapter gave you an idea of how one can use refinements to verify size related properties, and more generally, to specify and verify properties of recursive and polymorphic functions. Next, let’s see how we can use LiquidHaskell to prevent the creation of illegal values by refining data type definitions. Refined Datatypes

Sparse Vectors Revisited

As our first example of a refined datatype, let’s revisit the sparse vector representation that we saw earlier. The `SparseN` type alias we used got the job done, but is not pleasant to work with because we have no way of determining the dimension of the sparse vector. Instead, let’s create a new datatype to represent such vectors:
Thus, a sparse vector is a pair of a dimension and a list of index-value tuples. Implicitly, all indices other than those in the list have the value 0 or the equivalent value type \( a \).

**Legal** Sparse vectors satisfy two crucial properties. First, the dimension stored in \( \text{spDim} \) is non-negative. Second, every index in \( \text{spelems} \) must be valid, i.e. between 0 and the dimension. Unfortunately, Haskell’s type system does not make it easy to ensure that illegal vectors are not representable.

The standard approach is to use abstract types and smart constructors but even then there is only the informal guarantee that the smart constructor establishes the right invariants.

**Data Invariants** LiquidHaskell lets us enforce these invariants with a refined data definition:

\[
\{-@ \text{data Sparse } a = \text{SP} \begin{cases} \text{spDim} :: \text{Int} \\ \text{spelems} :: [(\text{Int}, a)] \end{cases} \{-@\}
\]

Where, as before, we use the aliases:

\[
\{-@ \text{type Nat} = \{v: \text{Int} \mid 0 <= v\} \{-@\}
\]

\[
\{-@ \text{type Btw} \text{Lo Hi} = \{v: \text{Int} \mid \text{Lo} <= v \&\& v < \text{Hi}\} \{-@\}
\]

**Refined Data Constructors** The refined data definition is internally converted into refined types for the data constructor \( \text{SP} \):

```
-- Generated Internal representation
data Sparse a where
SP :: spDim:Nat
 -> spElems:[(Btw 0 spDim, a)]
 -> Sparse a
```

In other words, by using refined input types for \( \text{SP} \) we have automatically converted it into a smart constructor that ensures that every instance of a \( \text{Sparse} \) is legal. Consequently, LiquidHaskell verifies:

```
okSP :: Sparse String
okSP = SP 5 [(0, "cat")
 , (3, "dog")]
```

but rejects, due to the invalid index:
Field Measures. It is convenient to write an alias for sparse vectors of a given size \( n \). We can use the field name \( \text{spdim} \) as a measure, like \( \text{vlen} \). That is, we can use \( \text{spdim} \) inside refinements.

\[
\{-@ \text{type SparseN a N = \{v: Sparse a | spDim v == N\} @-}\}
\]

Sparse Products. Let’s write a function to compute a sparse product:

\[
\{-@ \text{dotProd :: x: Vector Int -> SparseN Int (vlen x) -> Int @-}\}
\text{dotProd} \ x \ (\text{SP} \ _ \ y) = \text{go} \ 0 \ y
\quad \text{where}
\quad \text{go sum} \ ((i, v) : y') = \text{go} \ (\text{sum} \ + \ (x ! i) \ * \ v) \ y'
\quad \text{go sum} \ [\ ] = \text{sum}
\]

LiquidHaskell verifies the above by using the specification to conclude that for each tuple \((i, v)\) in the list \( y \), the value of \( i \) is within the bounds of the vector \( x \), thereby proving \( x \! : \! i \) safe.

Folded Product. We can port the fold-based product to our new representation:

\[
\{-@ \text{dotProd' :: x: Vector Int -> SparseN Int (vlen x) -> Int @-}\}
\text{dotProd'} \ x \ (\text{SP} \ _ \ y) = \text{foldl'} \ \text{body} \ 0 \ y
\quad \text{where}
\quad \text{body sum} \ (i, v) = \text{sum} \ + \ (x ! i) \ * \ v
\]

As before, LiquidHaskell checks the above by automatically instantiating refinements for the type parameters of \( \text{foldl'} \), saving us a fair bit of typing and enabling the use of the elegant polymorphic, higher-order combinators we know and love.

Exercise 4.9 (Sanitization). \(*\) Invariants are all well and good for data computed inside our programs. The only way to ensure the legality of data coming from outside, i.e. from the “real world”, is to write a sanitizer that will check the appropriate invariants before constructing a Sparse vector. Write the specification and implementation of a sanitizer \( \text{fromList} \), so that the following type checks:

\[
\text{Hint: You need to check that all the indices in elts are less than dim; the easiest way is to compute a new Maybe \([(\text{Int}, a)\)] which is Just the original pairs if they are valid, and Nothing otherwise.}
\]
Exercise 4.10 (Addition). Write the specification and implementation of a function `plus` that performs the addition of two `Sparse` vectors of the same dimension, yielding an output of that dimension. When you are done, the following code should typecheck:

```haskell
plus :: (Num a) => Sparse a -> Sparse a -> Sparse a
plus x y = undefined
```

```haskell
{-@ test2 :: SparseN Int 3 @-}
test2 = plus vec1 vec2
where
 vec1 = SP 3 [(0, 12), (2, 9)]
 vec2 = SP 3 [(0, 8), (1, 100)]
```

Ordered Lists

As a second example of refined data types, let’s consider a different problem: representing ordered sequences. Here’s a type for sequences that mimics the classical list:

```haskell
data IncList a =
 Emp
| (:<) { hd :: a, tl :: IncList a }
```

```
infixr 9 <:
```

The Haskell type above does not state that the elements are in order of course, but we can specify that requirement by refining every element in `tl` to be greater than `hd`:

```haskell
{-@ data IncList a =
 Emp
| (:<) { hd :: a, tl :: IncList {v:a | hd <= v}} @-}
```

**Refined Data Constructors** Once again, the refined data definition is internally converted into a “smart” refined data constructor.

```haskell
-- Generated Internal representation
```
data IncList a where
  Emp :: IncList a
  (:<) :: hd:a -> tl:IncList {v:a | hd <= v} -> IncList a

which ensures that we can only create legal ordered lists.

okList = 1 :< 2 :< 3 :< Emp     -- accepted by LH
badList = 2 :< 1 :< 3 :< Emp     -- rejected by LH

It’s all very well to specify ordered lists. Next, lets see how it’s equally easy to establish these invariants by implementing several textbook sorting routines.

**Insertion Sort** First, lets implement insertion sort, which converts an ordinary list [a] into an ordered list IncList a.

```haskell
insertSort :: (Ord a) => [a] -> IncList a
insertSort [] = Emp
insertSort (x:xs) = insert x (insertSort xs)
```

The hard work is done by insert which places an element into the correct position of a sorted list. LiquidHaskell infers that if you give insert an element and a sorted list, it returns a sorted list.

```haskell
insert :: (Ord a) => a -> IncList a -> IncList a
insert y Emp = y :< Emp
insert y (x :< xs)
 | y <= x = y :< x :< xs
 | otherwise = x :< insert y xs
```

**Exercise 4.11** (Insertion Sort). Complete the implementation of the function below to use foldr to eliminate the explicit recursion in insertSort.

```haskell
insertSort' :: (Ord a) => [a] -> IncList a
insertSort' xs = foldr f b xs
 where
 f = undefined -- Fill this in
 b = undefined -- Fill this in
```

**Merge Sort** Similarly, it is easy to write merge sort, by implementing the three steps. First, we write a function that splits the input into two equal sized halves:
split :: [a] -> ([a], [a])
split (x:y:zs) = (x:xs, y:ys)
  where
    (xs, ys) = split zs
split xs = (xs, [])

Second, we need a function that combines two ordered lists

merge :: (Ord a) => InList a -> InList a -> InList a
merge xs Emp = xs
merge Emp ys = ys
merge (x :< xs) (y :< ys)
  | x <= y = x :< merge xs (y :< ys)
  | otherwise = y :< merge (x :< xs) ys

Finally, we compose the above steps to divide (i.e. split) and conquer (sort and merge) the input list:

mergesort :: (Ord a) => [a] -> InList a
mergesort [] = emp
mergesort [x] = x :< emp
mergesort xs = merge (mergesort ys) (mergesort zs)
  where
    (ys, zs) = split xs

Exercise 4.12 (QuickSort). ** Why is the following implementation of quickSort rejected by LiquidHaskell? Modify it so it is accepted.

Hint: Think about how append should behave so that the quickSort has the desired property. That is, suppose that ys and zs are already in increasing order. Does that mean that append x ys zs are also in increasing order? No! What other requirement do you need? bottle that intuition into a suitable specification for append and then ensure that the code satisfies that specification.

quicksort :: (Ord a) => [a] -> InList a
quicksort [] = emp
quicksort (x:xs) = append x lessers greaters
  where
    lessers = quicksort [y | y <- xs, y < x ]
    greaters = quicksort [z | z <- xs, z >= x ]

{-@ append :: x:a -> InList a
       -> InList a
       -> InList a @-}
Ordered Trees

As a last example of refined data types, let us consider binary search ordered trees, defined thus:

```
data BST a = Leaf
 | Node { root :: a
 , left :: BST a
 , right :: BST a }
```

**Binary Search Trees** enjoy the property that each root lies (strictly) between the elements belonging in the left and right subtrees hanging off the root. The ordering invariant makes it easy to check whether a certain value occurs in the tree. If the tree is empty i.e. a Leaf, then the value does not occur in the tree. If the given value is at the root then the value does occur in the tree. If it is less than (respectively greater than) the root, we recursively check whether the value occurs in the left (respectively right) subtree.

Figure 4.1 shows a binary search tree whose nodes are labeled with a subset of values from 1 to 9. We might represent such a tree with the Haskell value:

```
okBST :: BST Int
okBST = Node 6
 (Node 2
 (Node 1 Leaf Leaf)
 (Node 4 Leaf Leaf))
 (Node 9
 (Node 7 Leaf Leaf)
 Leaf)
```

**Refined Data Type** The Haskell type says nothing about the ordering invariant, and hence, cannot prevent us from creating illegal BST values that violate the invariant. We can remedy this with a refined data definition that captures the invariant. The aliases BSTL and BSTR denote BSTs with values less than and greater than some \( x \), respectively.\(^4\)

\(^4\) We could also just *inline* the definitions of BSTL and BSTR into that of BST but they will be handy later.
Refined Data Constructors As before, the above data definition creates a refined smart constructor for BST

data BST a where
  Leaf :: BST a
  Node :: r:a -> BST a) v < r
         -> BST a
         -> BST a

which prevents us from creating illegal trees

badBST = Node 66
          (Node 4
           (Node 1 Leaf Leaf)
           (Node 69 Leaf Leaf)) -- Out of order, rejected
          (Node 99
           (Node 77 Leaf Leaf)
           Leaf)

Exercise 4.13 (Duplicates). Can a BST Int contain duplicates?

Membership Let's write some functions to create and manipulate these trees. First, a function to check whether a value is in a BST:

mem :: (Ord a) => a -> BST a -> Bool
mem _ Leaf = False
mem k (Node k' l r)
    | k == k' = True
    | k < k' = mem k l
    | otherwise = mem k r

Singleton Next, another easy warm-up: a function to create a BST with a single given element:

one :: a -> BST a
one x = Node x Leaf Leaf
Insertion Let us write a function that adds an element to a BST.\(^5\)

\[
\text{add} :: (\text{Ord } a) \Rightarrow a \rightarrow \text{BST } a \rightarrow \text{BST } a
\]

\[
\begin{aligned}
\text{add } k' \begin{cases}
\text{Leaf} & = \text{one } k' \\
\text{Node } k \ell r & = \begin{cases}
\text{Node } k (\text{add } k' \ell) r & \text{if } k' < k \\
\text{Node } k (\text{add } k' r) & \text{otherwise}
\end{cases}
\end{cases}
\end{aligned}
\]

\(^5\) While writing this exercise I inadvertently swapped the \(k\) and \(k'\) which caused LiquidHaskell to protest.

Minimum For our next trick, let us write a function to delete the minimum element from a BST. This function will return a pair of outputs – the smallest element and the remainder of the tree. We can say that the output element is indeed the smallest, by saying that the remainder’s elements exceed the element. To this end, let us define a helper type.\(^6\)

\[
\text{data MinPair } a = \text{MP} \{ \text{mEl}t :: a, \text{rest} :: \text{BST } a \}
\]

We can specify that \(\text{mEl}t\) is indeed smaller than all the elements in \(\text{rest}\) via the data type refinement:

\[
\{-@ \text{data MinPair } a = \text{MP} \{ \text{mEl}t :: a, \text{rest} :: \text{BSTR } a \text{mEl}t \}\{-@\}
\]

Finally, we can write the code to compute MinPair

\[
\begin{aligned}
\text{delMin} :: (\text{Ord } a) \Rightarrow \text{BST } a \rightarrow \text{MinPair } a
\end{aligned}
\]

\[
\begin{aligned}
\text{delMin } (\text{Node } k \ell r) & = \text{MP } k \ell r \\
\text{delMin } (\text{Node } k l r) & = \text{MP } k' (\text{Node } k l' r)
\end{aligned}
\]

where

\[
\begin{aligned}
\text{MP } k' l' & = \text{delMin } l \\
\text{delMin } \text{Leaf} & = \text{die } "\text{Don’t say I didn’t warn ya!}" \\
\end{aligned}
\]

Exercise 4.14 (Delete). Use \(\text{delMin}\) to complete the implementation of \(\text{del}\) which deletes a given element from a BST, if it is present.

\[
\begin{aligned}
\text{del} :: (\text{Ord } a) \Rightarrow a \rightarrow \text{BST } a \rightarrow \text{BST } a
\end{aligned}
\]

\[
\begin{aligned}
\text{del } k' \begin{cases}
\text{Node } k \ell r & = \text{undefined} \\
\text{Leaf} & = \text{Leaf}
\end{cases}
\end{aligned}
\]

Exercise 4.15 (Safely Deleting Minimum). \(\star\) The function \(\text{delMin}\) is only sensible for non-empty trees. Read ahead to learn how to specify and verify that it is only called with such trees, and then apply that technique here to verify the call to \(\text{die}\) in \(\text{delMin}\).

Exercise 4.16 (BST Sort). Complete the implementation of \(\text{toList}\) to obtain a BST based sorting routine \(\text{bstSort}\).
bstSort :: (Ord a) => [a] -> IncList a
bstSort = toIncList . toBST

toBST :: (Ord a) => [a] -> BST a
toBST = foldr add Leaf

toIncList :: BST a -> IncList a
toIncList (Node x l r) = undefined
toIncList Leaf = undefined

Hint: This exercise will be a lot easier after you finish the quickSort exercise. Note that the signature for toIncList does not use Ord and so you cannot (and need not) use a sorting procedure to implement it.

Recap

In this chapter we saw how LiquidHaskell lets you refine data type definitions to capture sophisticated invariants. These definitions are internally represented by refining the types of the data constructors, automatically making them “smart” in that they preclude the creation of illegal values that violate the invariants. We will see much more of this handy technique in future chapters.

One recurring theme in this chapter was that we had to create new versions of standard datatypes, just in order to specify certain invariants. For example, we had to write a special list type, with its own copies of nil and cons. Similarly, to implement delMin we had to create our own pair type.

This duplication of types is quite tedious. There should be a way to just slap the desired invariants on to existing types, thereby facilitating their reuse. In a few chapters, we will see how to achieve this reuse by abstracting refinements from the definitions of datatypes or functions in the same way we abstract the element type a from containers like [a] or BST a.
5

Boolean Measures

In the last two chapters, we saw how refinements could be used to reason about the properties of basic Int values like vector indices, or the elements of a list. Next, let's see how we can describe properties of aggregate structures like lists and trees, and use these properties to improve the APIs for operating over such structures.

Partial Functions

As a motivating example, let us return to the problem of ensuring the safety of division. Recall that we wrote:

```haskell
{-@ divide :: Int -> NonZero -> Int @-}
divide _ 0 = die "divide-by-zero"
divide x n = x `div` n
```

The precondition asserted by the input type NonZero allows LiquidHaskell to prove that the die is never executed at run-time, but consequently, requires us to establish that wherever divide is used, the second parameter be provably non-zero. This requirement is not onerous when we know what the divisor is statically.

```haskell
avg2 x y = divide (x + y) 2
avg3 x y z = divide (x + y + z) 3
```

However, it can be more of a challenge when the divisor is obtained dynamically. For example, let's write a function to find the number of elements in a list:

```haskell
size :: [a] -> Int
size [] = 0
size (_:xs) = 1 + size xs
```
and use it to compute the average value of a list:

```haskell
avgMany xs = divide total elems
 where
 total = sum xs
 elems = size xs
```

Uh oh. LiquidHaskell wags its finger at us!

```haskell
src/04-measure.lhs:77:27-31: Error: Liquid Type Mismatch
 Inferred type
 VV : Int | VV == elems

 not a subtype of Required type
 VV : Int | Ø /= VV

In Context
 VV : Int | VV == elems
 elems : Int
```

We cannot prove that the divisor is NonZero, because it can be Ø – when the list is empty. Thus, we need a way of specifying that the input to avgMany is indeed non-empty!

### Lifting Functions to Measures

How shall we tell LiquidHaskell that a list is non-empty? Recall the notion of measure previously introduced to describe the size of a Data.Vector. In that spirit, let’s write a function that computes whether a list is not empty:

```haskell
notEmpty :: [a] -> Bool
notEmpty [] = False
notEmpty (_:_)= True
```

A measure is a total Haskell function,

1. With a single equation per data constructor, and
2. Guaranteed to terminate, typically via structural recursion.

We can tell LiquidHaskell to lift a function meeting the above requirements into the refinement logic by declaring:
Non-empty lists can now be described as the subset of plain old Haskell lists \([a]\) for which the predicate `notEmpty` holds.

```haskell
{-@ type NEList a = \{v:a | notEmpty v\} @-}
```

We can now refine various signatures to establish the safety of the list-average function.

**Size** returns a non-zero value if the input list is not-empty. We capture this condition with an implication in the output refinement.

```haskell
{-@ size :: xs:a -> \{v:Nat | notEmpty xs => v > 0\} @-}
```

**Average** is only sensible for non-empty lists. Happily, we can specify this using the refined `NEList` type:

```haskell
{-@ average :: NEList Int -> Int @-}
average xs = divide total elems
 where
 total = sum xs
 elems = size xs
```

**Exercise 5.1 (Average, Maybe).** Fix the code below to obtain an alternate variant `average'` that returns Nothing for empty lists:

```haskell
average' :: [Int] -> Maybe Int
average' xs
 | ok = Just $ divide (sum xs) elems
 | otherwise = Nothing
 where
 elems = size xs
 ok = elems > 0 -- What expression goes here?
```

**Exercise 5.2 (Debugging Specifications).** An important aspect of formal verifiers like LiquidHaskell is that they help establish properties not just of your implementations but equally, or more importantly, of your specifications. In that spirit, can you explain why the following two variants of `size` are rejected by LiquidHaskell?

```haskell
{-@ size1 :: xs:NEList a -> Pos @-}
size1 [] = 0
size1 (_:xs) = 1 + size1 xs
```
56  PROGRAMMING WITH REFINEMENT TYPES

{-@ size2 :: xs:a -> {v:Int | notEmpty xs => v > 0} @-}
size2 []    = 0
size2 (_:xs) = 1 + size2 xs

A Safe List API

Now that we can talk about non-empty lists, we can ensure the safety of various list-manipulating functions which are only well-defined on non-empty lists and crash otherwise.

Head and Tail are two of the canonical dangerous functions, that only work on non-empty lists, and burn horribly otherwise. We can type them simple as:

{-@ head :: NEList a -> a @-}
head (x:_)  = x
head []     = die "Fear not! 'twill ne'er come to pass"

{-@ tail :: NEList a -> [a] @-}
tail (_:xs) = xs
tail []    = die "Relaxeth! this too shall ne'er be"

LiquidHaskell uses the precondition to deduce that the second equations are dead code. Of course, this requires us to establish that callers of head and tail only invoke the respective functions with non-empty lists.

Exercise 5.3 (Safe Head). Write down a specification for null such that safeHead is verified. Do not force null to only take non-empty inputs, that defeats the purpose. Instead, its type should say that it works on all lists and returns True if and only if the input is non-empty.

Hint: You may want to refresh your memory about implies => and <=> from the chapter on logic.

safeHead :: [a] -> Maybe a
safeHead xs
  | null xs   = Nothing
  | otherwise = Just $ head xs

{-@ null :: [a] -> Bool @-}
null []    = True
null (_:_:_) = False
Groups

Let's use the above to write a function that chunks sequences into non-empty groups of equal elements:

```haskell
{-# groupEq :: (Eq a) => [a] -> [NList a] @-#
groupEq [] = []
groupEq (x:xs) = (x:ys) : groupEq zs
 where
 (ys, zs) = span (x ==) xs
```

By using the fact that *each element* in the output returned by `groupEq` is in fact of the form `x:ys`, LiquidHaskell infers that `groupEq` returns a `[NList a]` that is, a list of *non-empty lists*.

To Eliminate Stuttering from a string, we can use `groupEq` to split the string into blocks of repeating Chars, and then just extract the first Char from each block:

```haskell
-- >>> eliminateStutter "ssstringssss liiiiiiike thisss"
-- "strings like this"
eliminateStutter xs = map head $ groupEq xs
```

LiquidHaskell automatically instantiates the type parameter for `map` in `eliminateStutter` to `notEmpty v` to deduce that `head` is only called on non-empty lists.

Foldr1 is one of my favorite folds; it uses the first element of the sequence as the initial value. Of course, it should only be called with non-empty sequences:

```haskell
{-# foldr1 :: (a -> a -> a) -> NList a -> a @-#
foldr1 f (x:xs) = foldr f x xs
foldr1 _ [] = die "foldr1"
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ acc [] = acc
foldr f acc (x:xs) = f x (foldr f acc xs)
```

To Sum a non-empty list of numbers, we can just perform a `foldr1` with the `+` operator: Thanks to the precondition, LiquidHaskell will prove that the `die` code is indeed dead. Thus, we can write

```haskell
{-# sum :: (Num a) => NList a -> a @-#
sum [] = die "cannot add up empty list"
sum xs = foldr1 (+) xs
```
Consequently, we can only invoke \texttt{sum} on non-empty lists, so:

\begin{verbatim}
sum0k = sum [1,2,3,4,5]    -- is accepted by LH, but
sumBad = sum []            -- is rejected by LH
\end{verbatim}

**Exercise 5.4 (Weighted Average).** The function below computes a weighted average of its input. Unfortunately, LiquidHaskell is not very happy about it. Can you figure out why, and fix the code or specification appropriately?

\begin{verbatim}
{-@ wtAverage :: NEList (Pos, Pos) -> Int @-}
wtAverage wxs = divide totElems totWeight
  where
elems = map (\(w, x) -> w * x) wxs
weights = map (\(w, _) -> w) wxs
totElems = sum elems
totWeight = sum weights
sum = foldr1 (+)

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
\end{verbatim}

*Hint:* On what variables are the errors? How are those variables’ values computed? Can you think of a better specification for the function(s) doing those computations?

**Exercise 5.5 (Mitchell’s Risers).** Non-empty lists pop up in many places, and it is rather convenient to have the type system track non-emptiness without having to make up special types. Consider the \texttt{risers} function, popularized by Neil Mitchell. \texttt{safesplit} requires its input be non-empty; but LiquidHaskell believes that the call inside \texttt{risers} fails this requirement. Fix the specification for \texttt{risers} so that it is verified.

\begin{verbatim}
{-@ risers :: (Ord a) => [a] -> [[a]] @-}
risers [] = []
risers [x] = [[x]]
risers (x:y:etc)
  | x <= y = (x:s) : ss
  | otherwise = [x] : (s : ss)
  where
    (s, ss) = safeSplit $ risers (y:etc)
{-@ safeSplit :: NEList a -> (a, [a]) @-}
\end{verbatim}
Recap

In this chapter we saw how LiquidHaskell lets you

1. Define structural properties of data types,

2. Use refinements over these properties to describe key invariants that establish, at compile-time, the safety of operations that might otherwise fail on unexpected values at run-time, all while,

3. Working with plain Haskell types, here, Lists, without having to make up new types which can have the unfortunate effect of adding a multitude of constructors and conversions which often clutter implementations and specifications.

Of course, we can do a lot more with measures, so lets press on!

```haskell
safeSplit (x:xs) = (x, xs)
safeSplit _ = die "don't worry, be happy"
```
Many of the programs we have seen so far, for example those in here, suffer from indexitis. This is a term coined by Richard Bird which describes a tendency to perform low-level manipulations to iterate over the indices into a collection, opening the door to various off-by-one errors. Such errors can be eliminated by instead programming at a higher level, using a wholemeal approach where the emphasis is on using aggregate operations, like map, fold and reduce.

Wholemeal programming is no panacea as it still requires us to take care when operating on different collections; if these collections are incompatible, e.g. have the wrong dimensions, then we end up with a fate worse than a crash, a possibly meaningless result. Fortunately, LiquidHaskell can help. Let's see how we can use measures to specify dimensions and create a dimension-aware API for lists which can be used to implement wholemeal dimension-safe APIs.¹

Wholemeal Programming

Indexitis begone! As an example of wholemeal programming, let's write a small library that represents vectors as lists and matrices as nested vectors:

```haskell
data Vector a = V { vDim :: Int, vElts :: [a] }
 deriving (Eq)

data Matrix a = M { mRow :: Int, mCol :: Int, mElts :: Vector (Vector a) }
 deriving (Eq)
```

¹ In a later chapter we will use this API to implement K-means clustering.
The Dot Product of two vectors can be easily computed using a fold:

```haskell
dotProd :: (Num a) => Vector a -> Vector a -> a
dotProd vx vy = sum (prod xs ys)
 where
 prod = zipWith (\x y -> x * y)
 xs = vElts vx
 ys = vElts vy
```

Matrix Multiplication can similarly be expressed in a high-level, wholemeal fashion, by eschewing low level index manipulations in favor of a high-level iterator over the matrix elements:

```haskell
matProd :: (Num a) => Matrix a -> Matrix a -> Matrix a
matProd (M rx _ xs) (M _ cy ys) = M rx cy elts
 where
 elts = for xs $ \xi ->
 for ys $ \yi ->
 dotProd xi yi
```

The Iteration embodied by the for combinator, is simply a map over the elements of the vector.

```haskell
for :: Vector a -> (a -> b) -> Vector b
for (V n xs) f = V n (map f xs)
```

Wholemeal programming frees us from having to fret about low-level index range manipulation, but is hardly a panacea. Instead, we must now think carefully about the compatibility of the various aggregates. For example,

- **dotProd** is only sensible on vectors of the same dimension; if one vector is shorter than another (i.e. has fewer elements) then we will get a run-time crash but instead will get some gibberish result that will be dreadfully hard to debug.

- **matProd** is only well defined on matrices of compatible dimensions; the number of columns of \(mx\) must equal the number of rows of \(my\). Otherwise, again, rather than an error, we will get the wrong output.\(^2\)

\(^2\) In fact, while the implementation of `matProd` breezes past GHC it is quite wrong!
Specifying List Dimensions

In order to start reasoning about dimensions, we need a way to represent the dimension of a list inside the refinement logic.³

Measures are ideal for this task. Previously we saw how we could lift Haskell functions up to the refinement logic. Let's write a measure to describe the length of a list:⁴

```haskell
{-# measure size #-}
{-# size :: xs:[a] -> (v:Nat | v = size xs) #-}
size [] = 0
size (_:rs) = 1 + size rs
```

Measures Refine Constructors As with refined data definitions, the measures are translated into strengthened types for the type’s constructors. For example, the size measure is translated into:

```haskell
data [a] where
 [] :: {v: [a] | size v = 0}
 (:) :: a -> xs:[a] -> {v:[a]|size v = 1 + size xs}
```

Multiple Measures may be defined for the same data type. For example, in addition to the size measure, we can define a notEmpty measure for the list type:

```haskell
{-# measure notEmpty #-}
notEmpty :: [a] -> Bool
notEmpty [] = False
notEmpty (_:_:) = True
```

We Compose Different Measures simply by conjoining the refinements in the strengthened constructors. For example, the two measures for lists end up yielding the constructors:

```haskell
data [a] where
 [] :: {v: [a] | not (notEmpty v) && size v = 0}
 (:) :: a
 -> xs:[a]
 -> {v:[a]| notEmpty v && size v = 1 + size xs}
```

This is a very significant advantage of using measures instead of indices as in DML or Agda, as decouples property from structure, which crucially enables the use of the same structure for many different purposes. That is, we need not know a priori what indices to bake

³ We could just use vDim, but that is a cheat as there is no guarantee that the field’s value actually equals the size of the list!

⁴ Recall that these must be inductively defined functions, with a single equation per data-structor
into the structure, but can define a generic structure and refine it \textit{a posteriori} as needed with new measures.

We are almost ready to begin creating a dimension aware API for lists; one last thing that is useful is a couple of aliases for describing lists of a given dimension.

To make signatures symmetric lets define an alias for plain old (unrefined) lists:

\[
\text{type List } a = [a]
\]

A \textit{ListN} is a list with exactly \(N\) elements, and a \textit{ListX} is a list whose size is the same as another list \(X\). Note that when defining refinement type aliases, we use uppercase variables like \(N\) and \(X\) to distinguish \textit{value} parameters from the lowercase \textit{type} parameters like \(a\).

\[
\begin{align*}
\{-@ \text{type ListN} & a \ N = \{v:\text{List } a \mid \text{size } v = N\} @-\} \\
\{-@ \text{type ListX} & a \ X = \text{ListN } a \{\text{size } X\} @-\}
\end{align*}
\]

\textit{Lists: Size Preserving API}

With the types and aliases firmly in our pockets, let us write dimension-aware variants of the usual list functions. The implementations are the same as in the standard library i.e. \texttt{Data.List}, but the specifications are enriched with dimension information.

**Exercise 6.1** (Map). \texttt{map} yields a list with the same size as the input. Fix the specification of \textit{map} so that the \textit{prop_map} is verified.

\[
\begin{align*}
\{-@ \text{map} & :: (a \rightarrow b) \rightarrow \text{List } a \rightarrow \text{List } b @-\} \\
\text{map } \_ \ [\] & = [\] \\
\text{map } f \ (x:xs) & = f \ x : \text{map } f \ xs
\end{align*}
\]

\[
\{-@ \text{prop_map} :: \text{List } a \rightarrow \text{TRUE} @-\}
\]

\[
\text{prop_map } xs = \text{size } ys \ = \text{size } xs
\]

where
\[
\text{ys} = \text{map } \text{id} \ xs
\]

**Exercise 6.2** (Reverse). \textastern We can reverse the elements of a list as shown below, using the tail recursive function \textit{go}. Fix the signature for \textit{go} so that \textit{LiquidHaskell} can prove the specification for \textit{reverse}.

\textit{Hint}: How big is the list returned by \textit{go}?
zipWith requires both lists to have the same size, and produces a list with that same size.\(^5\)

\[
\{-@ zipWith :: (a -> b -> c) -> xs:List a -> ListX b xs -> ListX c xs \-\}
\]

\[
\begin{align*}
\text{zipWith} & \ f \ (a:as) \ (b:bs) = f \ a \ b : \ \text{zipWith} \ f \ as \ bs \\
\text{zipWith} & \ _ \ [] \ [] = [] \\
\text{zipWith} & \ _ \ _ \ _ = \text{die} \ "\text{no other cases}" \\
\end{align*}
\]

\textbf{unsafeZip}\ The signature for \textit{zipWith} is quite severe – it rules out the case where the zipping occurs only up to the shorter input. Here’s a function that actually allows for that case, where the output type is the shorter of the two inputs:

\[
\{-@ zip :: as:[a] -> bs:[b] -> \{v:[(a,b)] | \text{Tinier} \ v \ as \ bs \} \-\}
\]

\[
\begin{align*}
\text{zip} & \ []as \ (b:bs) = (a, b) : \text{zip} \ as \ bs \\
\text{zip} & \ _ \ [] = [] \\
\text{zip} & \ _ \ _ = []
\end{align*}
\]

The output type uses the predicate \text{tinier} \ Xs \ Ys \ Zs which defines the length of \textit{Xs} to be the smaller of that of \textit{Ys} and \textit{Zs}.\(^6\)

\[
\{-@ predicate \text{Tinier} X Y Z = \text{Min} \ (\text{size} \ X) \ (\text{size} \ Y) \ (\text{size} \ Z) \-\}
\{-@ predicate \text{Min} X Y Z = (\text{if} \ Y < Z \ \text{then} \ X = Y \ \text{else} \ X = Z) \-\}
\]

\textbf{Exercise 6.3 (Zip Unless Empty). ** In my experience, zip as shown above is far too permissive and lets all sorts of bugs into my code. As middle ground, consider zipOrNull below. Write a specification for zipOrNull such that the code below is verified by LiquidHaskell.}

\[
\{-@ zipOrNull :: [a] -> [b] -> [(a, b)] \-\}
\]

\[
\begin{align*}
\text{zipOrNull} & \ [] \ _ = [] \\
\text{zipOrNull} & \ _ \ [] = [] \\
\text{zipOrNull} & \ xs \ ys = \text{zipWith} \ (_,) \ xs \ ys
\end{align*}
\]

\[
\{-@ test1 :: \{v: \_ | \text{size} \ v = 2\} \-\}
\]

\(^5\) As made explicit by the call to \text{die}, the input type \text{rules out} the case where one list is empty and the other is not, as in that case the former’s length is zero while the latter’s is not, and hence, different.

\(^6\) In logic, if \( p \) then \( q \) else \( r \) is the same as \( p \Rightarrow q \ & \ not \ p \Rightarrow r \).
test1 = zipOrNull [0, 1] [True, False]
{-@ test2 :: {v: _ | size v = 0} @-}
test2 = zipOrNull [] [True, False]
{-@ test3 :: {v: _ | size v = 0} @-}
test3 = zipOrNull ["cat", "dog"] []

Hint: Yes, the type is rather gross; it uses a bunch of disjunctions ||, conjunctions && and implications =>.

Lists: Size Reducing API

Next, let’s look at some functions that truncate lists, in one way or another.

Take lets us grab the first k elements from a list:

{-@ take' :: n:Nat -> ListGE a n -> ListN a n @-}
take' 0 _ = []
take' n (x:xs) = x : take' (n-1) xs
take' _ _ = die "won’t happen"

The alias ListGE a n denotes lists whose length is at least n:

{-@ type ListGE a n = {v:List a | n <= size v} @-}

Exercise 6.4 (Drop). Drop is the yang to take’s yin: it returns the remainder after extracting the first k elements. Write a suitable specification for it so that the below typechecks.

drop 0 xs = xs
drop n (_:xs) = drop (n-1) xs
drop _ _ = die "won’t happen"
{-@ test4 :: ListN String 2 @-}
test4 = drop 1 ["cat", "dog", "mouse"]

Exercise 6.5 (Take it easy). The version take’ above is too restrictive; it insists that the list actually have at least n elements. Modify the signature for the real Take function so that the code below is accepted by LiquidHaskell.

take 0 _ = []
take _ [] = []
take \( n \) (\( x:xs \)) = \( x : \text{take} \ (n-1) \ \text{xs} \)

{-@ test5 :: [ListN String 2] @} test5 = [ take 2 ["cat", "dog", "mouse"]
| take 20 ["cow", "goat"] ]

The \textit{Partition} function breaks a list into two sub-lists of elements that either satisfy or fail a user supplied predicate.

\begin{verbatim}
partition :: (a -> Bool) -> [a] -> ([a], [a])
partition _ [] = ([], [])
partition f (x:xs)
  | f x = (x:ys, zs)
  | otherwise = (ys, x:zs)
  where
    (ys, zs) = partition f xs
\end{verbatim}

We would like to specify that the \textit{sum} of the output tuple’s dimensions equal the input list’s dimension. Lets write measures to access the elements of the output:

{-@ measure fst @} fst (\( x, _ \)) = \( x \)

{-@ measure snd @} snd (\( _, y \)) = \( y \)

We can now refine the type of \textit{partition} as:

{-@ partition :: _ -> xs:_ -> \{v:_ | Sum2 v (size xs)\} @-}

where \textit{Sum2} \( X \ N \) holds for a pair of lists dimensions add to \( N \):

{-@ predicate Sum2 X N = size (fst X) + size (snd X) = N @} 

\textbf{Exercise 6.6 (QuickSort).} \textit{Use \textit{partition} to implement \textit{quickSort}.}

```hs
quickSort :: (Ord a) => xs:List a -> ListX a xs @-
quickSort [] = []
quickSort (x:xs) = undefined
```

{-@ test10 :: ListN String 2 @} test10 = quickSort test4
**Dimension Safe Vector API**

We can use the dimension aware lists to create a safe vector API.

**Legal Vectors** are those whose \( \text{v\text{dim}} \) field actually equals the size of the underlying list:

```plaintext
{-@ data Vector a = V { vDim :: Nat
 , vElts :: ListN a vDim } @-}
```

When \( \text{v\text{dim}} \) is used a selector function, it returns the \( \text{v\text{dim}} \) field of \( x \).

```plaintext
{-@ vDim :: x:._ -> {v: Nat | v = vDim x} @-}
```

The refined data type prevents the creation of illegal vectors:

```plaintext
okVec = V 2 [10, 20] -- accepted by LH
badVec = V 2 [10, 20, 30] -- rejected by LH
```

As usual, it will be handy to have a few aliases.

```plaintext
-- | Non Empty Vectors
{-@ type VectorNE a = {v:Vector a | vDim v > 0} @-}

-- | Vectors of size \(N \)
{-@ type VectorN a N = {v:Vector a | vDim v = N} @-}

-- | Vectors of Size Equal to Another Vector \(X \)
{-@ type VectorX a X = VectorN a {vDim X} @-}
```

To **Create** a vector safely, we can start with the empty vector \( \text{v\text{Emp}} \) and then add elements one-by-one with \( \text{v\text{Cons}} \):

```plaintext
{-@ vEmp :: VectorN a @-}
vEmp = V 0 []

{-@ vCons :: a -> x:Vector a -> VectorN a {vDim x + 1} @-}
vCons x (V n xs) = V (n+1) (x:xs)
```

To **Access** vectors at a low-level, we can use equivalents of \textit{head} and \textit{tail}, which only work on non-empty Vectors:
To iterate over a vector we can use the for combinator:

{-@ for :: x:Vector a -> (a -> b) -> VectorX b x @-}
for (V n xs) f = V n (map f xs)

Binary pointwise operations should only be applied to compatible vectors, i.e. vectors with equal dimensions. We can write a generic binary pointwise operator:

{-@ vBin :: (a -> b -> c) -> x:Vector a
    -> VectorX b x
    -> VectorX c x
    @-}
vBin op (V n xs) (V _ ys) = V n (zipWith op xs ys)

The dot product of two vectors can be now implemented in a wholemeal and dimension safe manner, as:

{-@ dotProduct :: (Num a) => x:Vector a -> VectorX a x -> a @-}
dotProduct x y = sum $ vElts $ vBin (*) x y

Exercise 6.7 (vector constructor). Complete the specification and implementation of vecFromList which creates a vector from a plain list.

vecFromList :: [a] -> Vector a
vecFromList xs = undefined

test6 = dotProduct vx vy  -- should be accepted by LH

where
  vx = vecFromList [1,2,3]
  vy = vecFromList [4,5,6]

Exercise 6.8 (flatten). Write a function to flatten a nested Vector.
The Cross Product of two vectors can now be computed in a nice wholemeal style, by a nested iteration followed by a `flatten`.

```haskell
{-@ product :: xs:Vector _
 -> ys:Vector _
 -> VectorN _ (vDim xs * vDim ys)
 @-}
product xs ys = flatten (vDim ys) (vDim xs) xys
where
 xys = for ys $ \y ->
 for xs $ \x ->
 x * y
```

**Dimension Safe Matrix API**

The same methods let us create a dimension safe Matrix API which ensures that only legal matrices are created and that operations are performed on compatible matrices.

**Legal Matrices** are those where the dimension of the outer vector equals the number of rows `mRow` and the dimension of each inner vector is `mCol`. We can specify legality in a refined data definition:

```haskell
{-@ data Matrix a =
 M { mRow :: Pos,
 mCol :: Pos,
 mElts :: VectorN (VectorN a mCol) mRow }
 @-}
```

Notice that we avoid disallow degenerate matrices by requiring the dimensions to be positive.

```haskell
{-@ type Pos = {v:Int | 0 < v} @-}
```

It is convenient to have an alias for matrices of a given size:
{-@ type MatrixN a R C = {v:Matrix a | Dims v R C } @-}
{-@ predicate Dims M R C = mRow M = R && mCol M = C @-}

For example, we can use the above to write type:

{-@ ok23 :: MatrixN _ 2 3 @-}
ok23 = M 2 3 (V 2 [ V 3 [1, 2, 3]
           , V 3 [4, 5, 6] ])

**Exercise 6.9 (Legal Matrix).** Modify the definitions of bad1 and bad2 so that they are legal matrices accepted by LiquidHaskell.

bad1 :: Matrix Int
bad1 = M 2 3 (V 2 [ V 3 [1, 2 ]
           , V 3 [4, 5, 6]])

bad2 :: Matrix Int
bad2 = M 2 3 (V 2 [ V 2 [1, 2]
           , V 2 [4, 5 ]])

**Exercise 6.10 (Matrix Constructor).** ⋆ Write a function to construct a Matrix from a nested list.

matFromList :: [[a]] -> Maybe (Matrix a)
matFromList [] = Nothing
matFromList xss@(xs:_) = Just (M r c vs)
  where
    r = size xss
    c = size xs
    ok = undefined
    vs = undefined

**Exercise 6.11 (Refined Matrix Constructor).** ⋆⋆ Refine the specification for matFromList so that the following is accepted by LiquidHaskell.

{-@ mat23 :: Maybe (MatrixN Integer 2 2) @-}
mat23 = matFromList [ [1, 2]
           , [3, 4] ]

**Hint:** It is easy to specify the number of rows from xss. How will you figure out the number of columns? A measure may be useful.

**Matrix Multiplication** Finally, let’s implement matrix multiplication. You’d think we did it already, but in fact the implementation
at the top of this chapter is all wrong (run it and see!) We cannot just multiply any two matrices: the number of columns of the first must equal to the rows of the second – after which point the result comprises the dotProduct of the rows of the first matrix with the columns of the second.

```haskell
{-# matProduct :: (Num a) => x:Matrix a
 -> y:(Matrix a | mCol x = mRow y)
 -> MatrixN a (mRow x) (mCol y)
 #-}
matProduct (M rx _ xs) my@(M _ cy _)
 = M rx cy elts
where
 elts = for xs $ \xi ->
 for ys' $ \yj ->
 dotProduct xi yj
 M _ _ ys' = transpose my
```

To iterate over the columns of the matrix my we just transpose it so the columns become rows.

```haskell
-- >>> ok32 == transpose ok23
-- True
ok32 = M 3 2 (V 3 [V 2 [1, 4]
 , V 2 [2, 5]
 , V 2 [3, 6]])
```

**Exercise 6.12 (Matrix Transpose).** **Use the Vector API to complete the implementation of txgo. For inspiration, you might look at the implementation of Data.List.transpose from the prelude. Better still, don’t.**

```haskell
{-# transpose :: m:Matrix a -> MatrixN a (mCol m) (mRow m) #-}
transpose (M r c rows) = M c r $ txgo c r rows

{-# txgo :: c:Nat -> r:Nat
 -> VectorN (VectorN a c) r
 -> VectorN (VectorN a r) c
 #-}
taxgo c r rows = undefined
```

*Hint:* As shown by ok23 and ok32, transpose works by stripping out the heads of the input rows, to create the corresponding output rows.
Recap

In this chapter, we saw how to use measures to describe numeric properties of structures like lists (Vector) and nested lists (Matrix).

1. Measures are \textit{structurally recursive} functions, with a single equation per data constructor,

2. Measures can be used to create refined data definitions that prevent the creation of illegal values,

3. Measures can then be used to enable safe wholemeal programming, via dimension-aware APIs that ensure that operators only apply to compatible values.

We can use numeric measures to encode various other properties of data structures. We will see examples ranging from high-level AVL trees, to low-level safe pointer arithmetic.
Elemental Measures

Often, correctness requires us to reason about the set of elements represented inside a data structure, or manipulated by a function. Examples of this abound: for example, we’d like to know that:

- **sorting** routines return permutations of their inputs – i.e. return collections whose elements are the same as the input set,

- **resource** management functions do not inadvertently create duplicate elements or drop elements from set of tracked resources.

- **syntax-tree** manipulating procedures create well-scoped trees where the set of used variables are contained within the set of variables previously defined.

**SMT Solvers** support very expressive logics. In addition to linear arithmetic and uninterpreted functions, they can efficiently decide formulas over sets. Next, lets see how LiquidHaskell lets us exploit this fact to develop types and interfaces that guarantee invariants over the set of elements of a structures.

**Talking about Sets**

First, we need a way to talk about sets in the refinement logic. We could roll our own special Haskell type but for now, lets just use the Set a type from the prelude’s Data.Set.¹

**LiquidHaskell Lifts** the basic set operators from Data.Set into the refinement logic. That is, the prelude defines the following logical functions that correspond to the Haskell functions of the same name:

```haskell
measure empty :: Set a
measure singleton :: a -> Set a
measure member :: a -> Set a -> Bool
```

¹ See [this](#) for a brief description of how to work directly with the set operators natively supported by LiquidHaskell.
measure union :: Set a -> Set a -> Set a
measure intersection :: Set a -> Set a -> Set a
measure difference :: Set a -> Set a -> Set a

Interpreted Operators The above operators are interpreted by the SMT solver. That is, just like the SMT solver “knows”, via the axioms of the theory of arithmetic that:

\[ x = 2 + 2 \Rightarrow x = 4 \]

is a valid formula, i.e. holds for all \( x \), the solver “knows” that:

\[ x = (\text{singleton} \ 1) \Rightarrow y = (\text{singleton} \ 2) \Rightarrow x = (\text{intersection} \ x \ (\text{union} \ y \ x)) \]

This is because, the above formulas belong to a decidable Theory of Sets reduces to McCarthy’s more general Theory of Arrays. See this recent paper to learn how modern SMT solvers prove equalities like the above.

Proving QuickCheck Style Properties

To get the hang of what’s going on, let’s do a few warm up exercises, using LiquidHaskell to prove various simple theorems about sets and operations over them.

We Refine The Set API to make it easy to write down theorems. That is, we give the operators in Data.Set refinement type signatures that precisely track their set-theoretic behavior:

empty :: {v:Set a | v = empty}
member :: x:a
      -> s:Set a
      -> {v:Bool | v <= member x s}
singleton :: x:a -> {v:Set a | v = singleton x}
union :: x:Set a
      -> y:Set a
      -> {v:Set a | v = union x y}
intersection :: x:Set a
              -> y:Set a
              -> {v:Set a | v = intersection x y}
difference :: x:Set a
            -> y:Set a
            -> {v:Set a | v = difference x y}
We can assert theorems as QuickCheck style properties, that is, as functions from arbitrary inputs to a Bool output that must always be True. Let's define aliases for the Booleans that are always True or False:

```haskell
{-# type True = {v:Bool | v} @-}
{-# type False = {v:Bool | not v} @-}
```

We can use True to state theorems. For example, the unexciting arithmetic equality above becomes:

```haskell
{-# prop_one_plus_one_eq_two :: _ -> True @-}
prop_one_plus_one_eq_two x = (x == 1 + 1) `implies` (x == 2)
```

Where implies is just the implication function over Bool:

```haskell
{-# type implies :: p:Bool -> q:Bool -> Implies p q @-}
implies False _ = True
implies _ True = True
implies _ _ = False
```

and Implies p q is defined as:

```haskell
{-# type Implies P Q = {v: | v <=> (P => Q)} @-}
```

**Exercise 7.1 (Bounded Addition).** Write and prove a QuickCheck style theorem that: \( \forall x,y.x < 100 \land y < 100 \Rightarrow x + y < 200 \).

```haskell
{-# prop_x_y_RPP :: _ -> _ -> True @-}
prop_x_y_RPP x y = False -- fill in the theorem body
```

The commutativity of intersection can be easily stated and proved as a QuickCheck style theorem:

```haskell
{-# prop_intersection_comm :: _ -> _ -> True @-}
prop_intersection_comm x y = (x `intersection` y) == (y `intersection` x)
```

The associativity of union can similarly be confirmed:

```haskell
{-# prop_union_assoc :: _ -> _ -> True @-}
prop_union_assoc x y z = (x `union` (y `union` z)) == (x `union` y) `union` z
```

The distributivity laws for Boolean Algebra can be verified by writing properties over the relevant operators. For example, we let's check that union distributes over intersection:
Non-Theorems should be rejected. So, while we’re at it, let’s make sure LiquidHaskell doesn’t prove anything that isn’t true …

Exercise 7.2 (Set Difference). Why does the above property fail?

1. Use QuickCheck (or your own little grey cells) to find a counterexample for the property prop_cup_dif_bad.
2. Use the counterexample to assign pre a non-trivial (i.e. other than False) condition so that the property can be proved.

Thus, LiquidHaskell’s refined types offer a nice interface for interacting with the SMT solvers in order to prove theorems, while letting us use QuickCheck to generate counterexamples.\(^3\)

Content-Aware List API

Let’s return to our real goal, which is to verify properties of programs. First, we need a way to refine the list API to precisely track the set of elements in a list.

The Elements of a List can be described by a simple recursive measure that walks over the list, building up the set:

\(\{-@ \text{measure elts @-}\}\)

\[
\begin{align*}
\text{elts} &:\ (\text{Ord } a) \Rightarrow [a] \Rightarrow \text{Set } a \\
\text{elts } [] & = \text{empty} \\
\text{elts } (x:xs) & = \text{singleton } x \ \text{`union`} \ \text{elts } xs
\end{align*}
\]

Lets write a few helpful aliases for various refined lists that will then make the subsequent specifications pithy and crisp.

- A list with elements S
• An empty list

{-@ type ListEmp a = ListS a {Set_empty 0} @-}

• A list whose contents equal those of list \( X \)

{-@ type ListEq a X = ListS a {elts X} @-}

• A list whose contents are a subset of list \( X \)

{-@ type ListSub a X = (\( a \mid \text{Set_sub} (\text{elts} v) (\text{elts} X) \)) @-}

• A list whose contents are the union of lists \( X \) and \( Y \)

{-@ type ListUn a X Y = ListS a {Set_cup (\text{elts} X) (\text{elts} Y)} @-}

• A list whose contents are exactly \( X \) and the contents of \( Y \)

{-@ type ListUnl a X Y = ListS a {Set_cup {\text{Set_sng} X} (\text{elts} Y)} @-}

The Measures strengthens the data constructors for lists. That is, we get the automatically refined types for “nil” and “cons”:

data List a where
  [] :: ListEmp a
  (\:: a :: x:a -> xs:List a -> ListUnl a x xs

Let’s take our new vocabulary out for a spin!

The Append function returns a list whose elements are the union of the elements of the input Lists:

{-@ append' :: xs:_ -> ys:_ -> ListUn a xs ys @-}
append' [] ys = ys
append' (x:xs) ys = x : append' xs ys

Exercise 7.3 (Reverse). Write down a type for revHelper so that reverse' is verified by LiquidHaskell.

{-@ reverse' :: xs:List a -> ListEq a xs @-}
reverse' xs = revHelper [] xs

revHelper acc [] = acc
revHelper acc (x:xs) = revHelper (x:acc) xs
**Exercise 7.4** (Halve). *Write down a specification for halve such that the subsequent “theorem” prop_halve_append is proved by LiquidHaskell.*

```haskell
halve :: Int -> [a] -> ([a], [a])
halve 0 xs = ([], xs)
halve n (x:y:zs) = (x:xs, y:ys) where (xs, ys) = halve (n-1) zs
halve _ xs = ([], xs)
```

```haskell
{-@ prop_halve_append :: _ -> _ -> True @-}
prop_halve_append n xs = elts xs == elts xs'
 where
 xs' = append' ys zs
 (ys, zs) = halve n xs
```

*Hint:* You may want to remind yourself about the dimension-aware signature for partition from the earlier chapter.

**Exercise 7.5** (Membership). *Write down a signature for elem that suffices to verify test1 and test2.*

```haskell
{-@ elem :: (Eq a) => a -> [a] -> Bool @-}
elem x (y:ys) = x == y || elem x ys
elem _ [] = False
```

```haskell
{-@ test1 :: True @-}
test1 = elem 2 [1, 2, 3]
```

```haskell
{-@ test2 :: False @-}
test2 = elem 2 [1, 3]
```

**Permutations**

Next, let’s use the refined list API to prove that various sorting routines return permutations of their inputs, that is, return output lists whose elements are the same as those of the input lists.\(^4\)

**Insertion Sort** is the simplest of all the list sorting routines; we build up an (ordered) output list inserting each element of the input list into the appropriate position of the output:

```haskell
insert x [] = [x]
insert x (y:ys)
 | x <= y = x : y : ys
 | otherwise = y : insert x ys
```
Thus, the output of \( \text{insert} \) has all the elements of the input \( \text{xs} \), plus the new element \( x \):

\[
\{-@ \text{insert} :: x:a \rightarrow \text{xs}:\text{List} a \rightarrow \text{ListUnl} a \times \text{xs} @-\}
\]

The above signature lets us prove that the output of the sorting routine indeed has the elements of the input:

\[
\{-@ \text{insertSort} :: (\text{Ord} a) \Rightarrow \text{xs}:\text{List} a \rightarrow \text{ListEq} a \times \text{xs} @-\}
\]

\[
\text{insertSort} \ [\] = []
\]

\[
\text{insertSort} \ (x:xs) = \text{insert} \ x \ (\text{insertSort} \ xs)
\]

**Exercise 7.6 (Merge).** Fix the specification of \( \text{merge} \) so that the subsequent property \( \text{prop\_merge\_app} \) is verified by LiquidHaskell.

\[
\{-@ \text{merge} :: \text{xs}:\text{List} a \rightarrow \text{ys}:\text{List} a \rightarrow \text{List} a @-\}
\]

\[
\text{merge} \ (x:xs) \ (y:ys)
\]

\[
| x \leq y = x : \text{merge} \ xs \ (y:ys)
\]

\[
| \text{otherwise} = y : \text{merge} \ (x:xs) \ ys
\]

\[
\text{merge} \ [\] \ ys = ys
\]

\[
\text{merge} \ xs \ [\] = xs
\]

\[
\{-@ \text{prop\_merge\_app} :: _ \rightarrow _ \rightarrow \text{True} @-\}
\]

\[
\text{prop\_merge\_app} \ xs \ ys = \text{elts} \ zs \ == \ \text{elts} \ zs'
\]

\[
\text{where}
\]

\[
zs = \text{append}' \ xs \ ys
\]

\[
zs' = \text{merge} \ xs \ ys
\]

**Exercise 7.7 (Merge Sort).** ⭐⭐ Once you write the correct type for \( \text{merge} \) above, you should be able to prove the er, unexpected signature for \( \text{mergeSort} \) below.

1. Make sure you are able verify the given signature.

2. Obviously we don’t want \( \text{mergeSort} \) to return the empty list, so there’s a bug. Find and fix it, so that you cannot prove that the output is empty, but can instead prove that the output is \( \text{ListEq} a \ \text{xs} \).

\[
\{-@ \text{mergeSort} :: (\text{Ord} a) \Rightarrow \text{xs}:\text{List} a \rightarrow \text{ListEmp} a @-\}
\]

\[
\text{mergeSort} \ [\] = []
\]

\[
\text{mergeSort} \ xs = \text{merge} \ (\text{mergeSort} \ ys) \ (\text{mergeSort} \ zs)
\]

\[
\text{where}
\]

\[
(y:s, z:s) = \text{halve} \ \text{mid} \ \text{xs}
\]

\[
\text{mid} = \text{length} \ \text{xs} \ \text{`div`} \ 2
\]
Uniqueness

Often, we want to enforce the invariant that a particular collection contains no duplicates; as multiple copies in a collection of file handles or system resources can create unpleasant leaks. For example, the xmonad window manager creates a sophisticated zipper data structure to hold the list of active user windows and carefully maintains the invariant that that the zipper contains no duplicates. Next, let’s see how to specify and verify this invariant using LiquidHaskell, first for lists, and then for a simplified zipper.

To Specify Uniqueness we need a way of saying that a list has no duplicates. There are many ways to do so; the simplest is a measure:

\[
\text{unique} :: (\text{Ord } a) \Rightarrow \text{List } a \rightarrow \text{Bool}
\]

\[
\text{unique } [] = \text{True}
\]

\[
\text{unique } (x:x:s) = \text{unique } x:s && \text{not } (\text{member } x (\text{elts } x:s))
\]

We can use the above to write an alias for duplicate-free lists:

\[
\text{ulist } a = \{v : \text{List } a \mid \text{unique } v\}
\]

Let’s quickly check that the right lists are indeed unique:

\[
\text{isUnique} :: \text{UList } \text{Int } \rightarrow \text{Bool}
\]

\[
\text{isUnique } = [1, 2, 3] \text{ -- accepted by LH}
\]

\[
\text{isNotUnique} :: \text{UList } \text{Int } \rightarrow \text{Bool}
\]

\[
\text{isNotUnique } = [1, 2, 3, 1] \text{ -- rejected by LH}
\]

The Filter function returns a subset of its elements, and hence, preserves uniqueness. That is, if the input is unique, the output is too:

\[
\text{filter } :: (a \rightarrow \text{Bool}) \\
\rightarrow \text{xs:UList } a \\
\rightarrow \{v : \text{ListSub } a \text{ xs } \mid \text{unique } v\}
\]

\[
\text{filter } _ [] = []
\]

\[
\text{filter } f (x:x:s) \\
| f x = x : x:s' \\
| \text{otherwise} = x:s'
\]

\[
\text{where}
\]

\[
\text{xs'} = \text{filter } f x
\]
**Exercise 7.8 (Filter).** It seems a bit draconian to require that filter only be called with unique lists. Write down a more permissive type for filter below such that the subsequent uses are verified by LiquidHaskell.

```haskell
defilter' _ [] = []
defilter' f (x:xs)
 | f x = x : xs'
 | otherwise = xs'
 where
 xs' = filter' f xs
```

```haskell
{-@ test3 :: ULList _ @-}
test3 = filter' (> 2) [1,2,3,4]

{-@ test4 :: [] @-}
test4 = filter' (> 3) [3,1,2,3]
```

**Exercise 7.9 (Reverse).** ✴ When we reverse their order, the set of elements is unchanged, and hence unique (if the input was unique). Why does LiquidHaskell reject the below? Can you fix things so that we can prove that the output is a ULList a?

```haskell
{-@ reverse :: xs:ULList a -> ULList a @-}
reverse = go []
 where
 {-@ go :: a:List a -> xs:List a -> List a @-}
go a [] = a
 go a (x:xs) = go (x:a) xs
```

The **Nub** function constructs a unique list from an arbitrary input by traversing the input and tossing out elements that are already seen:

```haskell
{-@ nub :: List a -> ULList a @-}
nub xs = go [] xs
 where
 go seen [] = seen
 go seen (x:xs)
 | x `isin` seen = go seen xs
 | otherwise = go (x:seen) xs
```

The key membership test is done by **isin**, whose output is True exactly when the element is in the given list.⁵

---

⁵ Which should be clear by now, if you did a certain exercise above . . . .
Exercise 7.10 (Append). ★ Why does appending two ULists not return a UList? Fix the type signature below so that you can prove that the output is indeed unique.

{-@ append :: UList a -> UList a -> UList a @-}
append [] ys = ys
append (x:xs) ys = x : append xs ys

Exercise 7.11 (Range). ★★ range i j returns the list of Int between i and j. LiquidHaskell refuses to acknowledge that the output is indeed a UList. Fix the code so that LiquidHaskell verifies that it implements the given signature (and of course, computes the same result.)

{-@ type Btwn I J = {v: | I <= v && v < J} @-}
{-@ range :: i:Int -> j:Int -> UList (Btwn i j) @-}
range i j
  | i < j = i : range (i + 1) j
  | otherwise = []

Hint: This may be easier to do after you read this chapter about lemmas.

Unique Zippers

A zipper is an aggregate data structure that is used to arbitrarily traverse the structure and update its contents. For example, a zipper for a list is a data type that contains an element (called focus) that we are currently focus-ed on, a list of elements to the left of (i.e. before) the focus, and a list of elements to the right (i.e. after) the focus.

```haskell
data Zipper a = Zipper {
 focus :: a
, left :: List a
, right :: List a
}
```
xmonad is a wonderful tiling window manager, that uses a zipper to store the set of windows being managed. xmonad requires the crucial invariant that the values in the zipper be unique, that is, be free of duplicates.

We Refine Zipper to capture the requirement that legal zippers are unique. To this end, we state that the left and right lists are unique, disjoint, and do not contain focus.

```haskell
{-# data Zipper a = Zipper {
 focus :: a
 , left :: {v: UList a | not (In focus v)}
 , right :: {v: UList a | not (In focus v) && Disj v left }
} #-}
{-# predicate Disj X Y = Disjoint (elts X) (elts Y) #-}
```

Our Refined Zipper Constructor makes illegal states unrepresentable. That is, by construction, we will ensure that every Zipper is free of duplicates. For example, it is straightforward to create a valid Zipper from a unique list:

```haskell
{-# differentiate :: UList a -> Maybe (Zipper a) #-}
differentiate [] = Nothing
differentiate (x:xs) = Just $ Zipper x [] xs
```

Exercise 7.12 (Deconstructing Zippers). ⋆ Dually, the elements of a unique zipper tumble out into a unique list. Strengthen the types of reverse and append above so that LiquidHaskell accepts the below signatures for integrate:

```haskell
{-# integrate :: Zipper a -> UList a #-}
integrate (Zipper x l r) = reverse l `append` (x : r)
```

We can Shift the Focus element to the left or right while preserving the uniqueness invariant. Here’s the code that shifts the focus to the left:

```haskell
focusLeft :: Zipper a -> Zipper a
focusLeft (Zipper t (l:ls) rs) = Zipper l ls (t:rs)
focusLeft (Zipper t [] rs) = Zipper x xs []
 where
 (x:xs) = reverse (t:rs)
```

To shift to the right, we simply reverse the elements and shift to the left:
To **filter** elements from a zipper, we need to take care when the focus itself, or all the elements get eliminated. In the latter case, there is no zipper and so the operation returns a `Maybe`:

```haskell
filterZipper :: (a -> Bool) -> Zipper a -> Maybe (Zipper a)
filterZipper p (Zipper f ls rs) = case filter p (f:rs) of
 f':rs' -> Just $ Zipper f' (filter p ls) rs'
 [] -> case filter p ls of
 f':ls' -> Just $ Zipper f' ls'
 [] -> Nothing
```

Thus, by using LiquidHaskell’s refinement types, and the SMT solvers native reasoning about sets, we can ensure the key uniqueness invariant holds in the presence of various tricky operations that are performed over zippers.

**Recap**

In this chapter, we saw how SMT solvers can let us reason precisely about the actual contents of data structures, via the theory of sets. In particular, we saw how to:

- *Lift set-theoretic primitives* to refined Haskell functions from the `Data.Set` library,

- *Define measures* like `elts` that characterize the set of elements of structures, and `unique` that describe high-level application specific properties about those sets,

- *Specify and verify* that implementations enjoy various functional correctness properties, e.g. that sorting routines return permutations of their inputs, and various zipper operators preserve uniqueness.

Next, we present a variety of longer *case-studies* that illustrate the techniques developed so far on particular application domains.
Case Study: Okasaki’s Lazy Queues

Lets start with a case study that is simple enough to explain without pages of code, yet complex enough to show off what’s cool about dependency: Chris Okasaki’s beautiful Lazy Queues. This structure leans heavily on an invariant to provide fast insertion and deletion. Let’s see how to enforce that invariant with LiquidHaskell.

Queues

A queue is a structure into which we can insert and remove data such that the order in which the data is removed is the same as the order in which it was inserted.

To efficiently implement a queue we need to have rapid access to both the front as well as the back because we remove elements from former and insert elements into the latter. This is quite straightforward with explicit pointers and mutation – one uses an old school
linked list and maintains pointers to the head and the tail. But can we implement the structure efficiently without having stoop so low?

Chris Okasaki came up with a very cunning way to implement queues using a pair of lists – let’s call them front and back which represent the corresponding parts of the Queue.

- To insert elements, we just cons them onto the back list,
- To remove elements, we just un-cons them from the front list.

The catch is that we need to shunt elements from the back to the front every so often, e.g. we can transfer the elements from the back to the front, when:

1. a remove call is triggered, and
2. the front list is empty.

Okasaki’s first insight was to note that every element is only moved once from the front to the back; hence, the time for insert and lookup could be $O(1)$ when amortized over all the operations. This is perfect, except that some set of unlucky remove calls (which occur when the front is empty) are stuck paying the bill. They have a rather high latency up to $O(n)$ where $n$ is the total number of operations.

Okasaki’s second insight saves the day: he observed that all we need to do is to enforce a simple balance invariant:
Size of front $\geq$ Size of back

If the lists are lazy i.e. only constructed as the head value is demanded, then a single remove needs only a tiny $O(\log n)$ in the worst case, and so no single remove is stuck paying the bill.

**Let's implement Queues** and ensure the crucial invariant(s) with LiquidHaskell. What we need are the following ingredients:

1. A type for Lists, and a way to track their size,
2. A type for Queues which encodes the balance invariant
3. A way to implement the insert, remove and transfer operations.

**Sized Lists**

The first part is super easy. Let’s define a type:

```haskell
data SList a = SL { size :: Int, elems :: [a] }
```

We have a special field that saves the size because otherwise, we have a linear time computation that wrecks Okasaki’s careful analysis. (Actually, he presents a variant which does *not* require saving the size as well, but that’s for another day.)

How can we be sure that size is indeed the *real* size of *elems*? Let’s write a function to *measure* the real size:

```haskell
{-# measure realSize #-}
realSize :: [a] -> Int
realSize [] = 0
realSize (_:xs) = 1 + realSize xs
```

Now, we can simply specify a *refined* type for SList that ensures that the *real* size is saved in the size field:
{-@ data SList a = SL {
    size :: Nat
    , elems :: {v:a | realSize v = size}
} @-}

As a sanity check, consider this:

okList = SL 1 ["cat"] -- accepted
badList = SL 1 [] -- rejected

**Let's define an alias** for lists of a given size \( N \):

{-@ type SListN a N = {v:SList a | size v = N} @-}

Finally, we can define a basic API for SList.

To **construct** lists, we use nil and cons:

{-@ nil :: SListN a 0 @-}
nil = SL 0 []

{-@ cons :: a -> xs:SList a -> SListN a {size xs + 1} @-}
cons x (SL n xs) = SL (n+1) (x:xs)

**Exercise 8.1 (Destructing Lists).** We can destruct lists by writing a hd and tl function as shown below. Fix the specification or implementation such that the definitions typecheck.

{-@ tl :: xs:SList a -> SListN a {size xs - 1} @-}
tl (SL n (_:xs)) = SL (n-1) xs
tl _ = die "empty SList"

{-@ hd :: xs:SList a -> a @-}
hd (SL _ (x:_)) = x
hd _ = die "empty SList"

*Hint*: When you are done, okHd should be verified, but badHd should be rejected.

okHd = hd okList -- accepted
badHd = hd (tl okList) -- rejected
Queue Type

It is quite straightforward to define the Queue type, as a pair of lists, front and back, such that the latter is always smaller than the former:

```haskell
{-@ data Queue a = Q { front :: SList a , back :: SListLE a (size front) } @-}
```

The alias SListLE a l corresponds to lists with at most N elements:

```haskell
{-@ type SListLE a N = {v:SList a | size v <= N} @-}
```

As a quick check, notice that we cannot represent illegal Queues:

```
okQ = Q okList nil -- accepted, |front| > |back|
badQ = Q nil okList -- rejected, |front| < |back|
```

Queue Operations

Almost there! Now all that remains is to define the Queue API. The code below is more or less identical to Okasaki’s (I prefer front and back to his left and right.)

The Empty Queue is simply one where both front and back are both empty:

```
emp = Q nil nil
```

To remove an element we pop it off the front by using hd and tl. Notice that the remove is only called on non-empty queues, which together with the key balance invariant, ensures that the calls to hd and tl are safe.

```
remove (Q f b) = (hd f, makeq (tl f) b)
```

**Exercise 8.2** (Whither pattern matching?). *Can you explain why we (or Okasaki) didn’t use pattern matching here, and have instead opted for the explicit hd and tl?*

**Exercise 8.3** (Queue Sizes). *If you did the List Destructing exercise above, then you will notice that the code for remove has a type error: namely, the calls to hd and tl may fail if the f list is empty.*
1. Write a measure to describe the queue size,

2. Use it to complete the definition of QueueN below, and

3. Use it to give remove a type that verifies the safety of the calls made to hd and tl.

Hint: When you are done, okRemove should be accepted, badRemove should be rejected, and emp should have the type shown below:

```haskell
-- | Queues of size 'N'
{-@ type QueueN a N = {v:Queue a | true} @-}

okRemove = remove example2Q -- accept
badRemove = remove example0Q -- reject

{-@ emp :: QueueN _ @ @-}

{-@ example2Q :: QueueN _ 2 @-}
define example2Q = Q (1 'cons' (2 'cons' nil)) nil

{-@ example0Q :: QueueN _ 0 @-}
define example0Q = Q nil nil
```

To **Insert** an element we just cons it to the back list, and call the **smart constructor** makeq to ensure that the balance invariant holds:

```haskell
insert e (Q f b) = makeq f (e 'cons' b)
```

**Exercise 8.4** (Insert). Write down a type for insert such that replicate and y3 are accepted by LiquidHaskell, but y2 is rejected.

```haskell
{-@ replicate :: n:Nat -> a -> QueueN a n @-}
replicate 0 _ = emp
replicate n x = insert x (replicate (n-1) x)

{-@ y3 :: QueueN _ 3 @-}
y3 = replicate 3 "Yeah!"

{-@ y2 :: QueueN _ 3 @-}
y2 = replicate 1 "No!"
```

To ensure the invariant we use the smart constructor makeq, which is where the heavy lifting happens. The constructor takes two lists, the front f and back b and if they are balanced, directly returns
the Queue, and otherwise transfers the elements from b over using the 
rotate function rot described next.

```haskell
{-@ makeq :: f:List a -> b:List a -> QueueN a {size f + size b} @-}
makeq f b
 | size b <= size f = Q f b
 | otherwise = Q (rot f b nil) nil
```

**Exercise 8.5 (Rotate).** ★★ The Rotate function rot is only called when the 
back is one larger than the front (we never let things drift beyond that). It 
is arranged so that it the hd is built up fast, before the entire computation 
finishes; which, combined with laziness provides the efficient worst-case 
guarantee. Write down a type for rot so that it typechecks and verifies the 
type for makeq.

*Hint:* You may have to modify a precondition in makeq to capture the 
relationship between f and b.

```haskell
rot f b a
 | size f == 0 = hd b `cons` a
 | otherwise = hd f `cons` rot (tl f) (tl b) (hd b `cons` a)
```

**Exercise 8.6 (Transfer).** Write down a signature for take which extracts 
n elements from its input q and puts them into a new output Queue. When 
you are done, okTake should be accepted, but badTake should be rejected.

```haskell
take :: Int -> Queue a -> (Queue a, Queue a)
take 0 q = (emp , q)
take n q = (insert x out , q''')
 where
 (x , q''') = remove q
 (out, q''') = take (n-1) q'

{-@ okTake :: (QueueN _ 2, QueueN _ 1) @-}
okTake = take 2 exampleQ -- accept

badTake = take 10 exampleQ -- reject

exampleQ = insert "nal" $ insert "bob" $ insert "alice" $ emp
```

Recap

Well there you have it; Okasaki’s beautiful lazy Queue, with the 
invariants easily expressed and checked with LiquidHaskell. This 
example is particularly interesting because
1. The refinements express invariants that are critical for efficiency,
2. The code introspects on the size to guarantee the invariants, and
3. The code is quite simple and we hope, easy to follow!
Case Study: Associative Maps

Recall the following from the introduction:

ghci> :m +Data.Map
ghci> let m = fromList [ ("haskell", "lazy")
                   , ("javascript", "eager")]
ghci> m ! "haskell"
"lazy"
ghci> m ! "python"
"*** Exception: key is not in the map"

The problem illustrated above is quite a pervasive one; associative maps pop up everywhere. Failed lookups are the equivalent of NullPointerException exceptions in languages like Haskell. It is rather difficult to use Haskell’s type system to precisely characterize the behavior of associative map APIs as ultimately, this requires tracking the dynamic set of keys in the map.

In this case study, we’ll see how to combine two techniques, measures and refined data types, to analyze programs that implement and use associative maps (e.g. Data.Map or Data.HashMap).

Specifying Maps

Let’s start by defining a refined API for Associative Maps that tracks the set of keys stored in the map, in order to statically ensure the safety of lookups.

Types First, we need a type for Maps. As usual, let’s parameterize the type with k for the type of keys and v for the type of values:

data Map k v -- Currently left abstract
Keys

To talk about the set of keys in a map, we will use a `measure` that associates each `Map` to the set of its defined keys. Next, we use the above measure, and the usual set operators to refine the types of the functions that create, add and lookup key-value bindings, in order to precisely track, within the type system, the keys that are dynamically defined within each `Map`. ¹

### Empty Maps

Empty maps have no keys in them. Hence, we type the empty map as:

```
emp :: {m:Map k v | Empty (keys m)}
```

### Add

The function `set` takes a key `k` a value `v` and a map `m` and returns the new map obtained by extending `m` with the binding `k → v`. Thus, the set of keys of the output map includes those of the input plus the singleton `k`, that is:

```
set :: k:k → v → m:Map k v → {n: Map k v | AddKey k m n}
```

```
predicate AddKey K M N = keys N = Set_cup (Set_sng K) (keys M)
```

### Query

Finally, queries will only succeed for keys that are defined a given map. Thus, we define an alias:

```
predicate HasKey K M = In K (keys M)
```

and use it to type `mem` which checks if a key is defined in the `Map` and get which actually returns the value associated with a given key.

```
mem :: k:k → m:Map k v → {v:Bool | v <=> HasKey k m}
```

```
get :: k:k → {m:Map k v | HasKey k m} → v
```

### Using Maps: Well Scoped Expressions

Rather than jumping into the implementation of the above map API, let's write a `client` that uses maps to implement an interpreter for a tiny language. In particular, we will use maps as an `environment` containing the values of bound variables, and we will use the refined API to ensure that lookups never fail, and hence, that well-scoped programs always reduce to a value.

Expressions

Let's work with a simple language with integer constants, variables, binding and arithmetic operators:²

¹ Recall that `Empty`, `Union`, `In` and the other set operators are described here.

² Feel free to embellish the language with fancier features like functions, tuples etc.
Values We can use refinements to formally describe values as a subset of Expr allowing us to reuse a bunch of code. To this end, we simply define a (measure) predicate characterizing values:

```haskell
{-@ measure val @-}
val :: Expr -> Bool
val (Const _) = True
val (Var _) = False
val (Plus _ _) = False
val (Let _ _ _) = False
```

and then we can use the lifted measure to define an alias for Val denoting values:

```haskell
{-@ type Val = {v:Expr | val v} @-}
```

we can use the above to write simple operators on Val, for example:

```haskell
{-@ plus :: Val -> Val -> Val @-}
plus (Const i) (Const j) = Const (i+j)
plus _ _ = die "Bad call to plus"
```

Environments let us save values for the local” i.e. let-bound variables; when evaluating an expression Var x we simply look up the value of x in the environment. This is why Maps were invented! Lets define our environments as Maps from Variables to Values:

```haskell
{-@ type Env = Map Var Val @-}
```

The above definition essentially specifies, inside the types, an eager evaluation strategy: LiquidHaskell will prevent us from sticking unevaluated Exprs inside the environments.

Evaluation proceeds via a straightforward recursion over the structure of the expression. When we hit a Var we simply query its value from the environment. When we hit a Let we compute the bound expression and tuck its value into the environment before proceeding within.
The above `eval` seems rather unsafe; what's the guarantee that `get x g` will succeed? For example, surely trying:

```ghci
ghci> eval emp (Var "x")
```

will lead to some unpleasant crash. Shouldn't we check if the variables is present and if not, fail with some sort of `Variable Not Bound` error? We could, but we can do better: we can prove at compile time, that such errors will not occur.

**Free Variables** are those whose values are *not* bound within an expression, that is, the set of variables that *appear* in the expression, but are not *bound* by a dominating `let`. We can formalize this notion as a (lifted) function:

```haskell
{-# measure free #-}
free :: Expr -> (Set Var)
free (Const _) = empty
free (Var x) = singleton x
free (Plus e1 e2) = free e1 `union` free e2
 where
 xs1 = free e1
 xs2 = free e2
free (Let x e1 e2) = free e1 `union` (free e2 `difference` xs)
 where
 xs1 = free e1
 xs2 = free e2
 xs = singleton x
```

An Expression is Closed with respect to an environment $G$ if all the free variables in the expression appear in $G$, i.e. the environment contains bindings for all the variables in the expression that are *not* bound within the expression. As we've seen repeatedly, often a whole pile of informal hand-waving, can be succinctly captured by a type definition that says the free variables in the `Expr` must be contained in the keys of the environment $G$:
Closed Evaluation never goes wrong, i.e. we can ensure that eval will not crash with unbound variables, as long as it is invoked with suitable environments:

```markdown
{-@ eval :: g:Env -> ClosedExpr g -> Val @-}
```

We can be sure an Expr is well-scoped if it has no free variables. Let's use that to write a “top-level” evaluator:

```markdown
{-@ topEval :: {v:Expr | Empty (free v)} -> Val @-}
```

topeval = eval emp

**Exercise 9.1** (Wellformedness Check). Complete the definition of the below function which checks if an Expr is well formed before evaluating it:

```markdown
{-@ evalAny :: Env -> Expr -> Maybe Val @-}
```

evalAny g e
| ok = Just $ eval g e
| otherwise = Nothing

Proof is all well and good, in the end, you need a few sanity tests to kick the tires. So:

```markdown
tests = [v1, v2]
```

```markdown
where
v1 = topEval e1 -- Rejected by LH
v2 = topEval e2 -- Accepted by LH
e1 = (Var x) \`Plus\` c1
e2 = Let x c10 e1
x = \"x\"
c1 = Const 1
c10 = Const 10
```

**Exercise 9.2** (Closures). ** Extend the language above to include functions. That is, extend Expr as below, (and eval and free respectively.)

```markdown
data Expr = ... | Fun Var Expr | App Expr Expr
```

Just focus on ensuring the safety of variable lookups; ensuring full type-safety (i.e. every application is to a function) is rather more complicated and beyond the scope of what we’ve seen so far.
Implementing Maps: Binary Search Trees

We just saw how easy it is to use the Associative Map API to ensure the safety of lookups, even though the Map has a “dynamically” generated set of keys. Next, let’s see how we can implement a Map library that respects the API using Binary Search Trees

**Data Type** First, let’s provide an implementation of the hitherto abstract data type for Map. We shall use Binary Search Trees, wherein, at each Node, the left (resp. right) subtree has keys that are less than (resp. greater than) the root key.

```haskell
{-@ data Map k v = Node { key :: k
 , value :: v
 , left :: Map {v:k | v < key} v
 , right :: Map {v:k | key < v} v } | Tip
 @-}
```

**Recall** that the above refined data definition yields strengthened data constructors that statically ensure that only legal, binary-search ordered trees are created in the program.

**Defined Keys** Next, we must provide an implementation of the notion of the keys that are defined for a given Map. This is achieved via the lifted measure function:

```haskell
{-@ measure keys @-}
keys :: (Ord k) => Map k v -> Set k
keys Tip = empty
keys (Node k _ l r) = ks `union` kl `union` kr
 where
 kl = keys l
 kr = keys r
 ks = singleton k
```

Armed with the basic type and measure definition, we can start to fill in the operations for Maps.

**Exercise 9.3 (Empty Maps).** To make sure you are following, fill in the definition for an empty Map:

```haskell
{-@ emp :: {m:Map k v | Empty (keys m)} @-}
emp = undefined
```
Exercise 9.4 (Insert). To add a key \( k' \) to a Map we recursively traverse the Map zigging left or right depending on the result of comparisons with the keys along the path. Unfortunately, the version below has an (all too common!) bug, and hence, is rejected by LiquidHaskell. Find and fix the bug so that the function is verified.

```haskell
{-@ set :: (Ord k) => k:k -> v -> m:Map k v
 -> {n: Map k v | AddKey k m n} @-}
set k' v' (Node k v l r)
| k' == k = Node k v' l r
| k' < k = set k' v l
| otherwise = set k' v r
set k' v' Tip = Node k' v' Tip Tip
```

Lookup. Next, let's write the \texttt{mem} function that returns the value associated with a key \( k' \). To do so we just compare \( k' \) with the root key, if they are equal, we return the binding, and otherwise we go down the left (resp. right) subtree if sought for key is less (resp. greater) than the root key. Crucially, we want to check that \texttt{lookup never fails}, and hence, we implement the \texttt{Tip} (i.e. empty) case with \texttt{die} gets LiquidHaskell to prove that that case is indeed dead code, i.e. never happens at run-time.

```haskell
{-@ get' :: (Ord k) => k:k -> m:(Map k v | HasKey k m) -> v @-}
get' k' m@(Node k v l r)
| k' == k = v
| k' < k = get' k' l
| otherwise = get' k' r
get' _ Tip = die "Lookup Never Fails"
```

Unfortunately the function above is rejected by LiquidHaskell. This is a puzzler (and a bummer!) because in fact it \textit{is} correct. So what gives? Well, let's look at the error for the call \texttt{get' k' l}

```
src/07-case-study-associative-maps.lhs:411:25: Error: Liquid Type Mismatch
 Inferred type
 VV : Map a b | VV == 1
 not a subtype of Required type
 VV : Map a b | Set_mem k' (keys VV)
In Context
 VV : Map a b | VV == 1
 k : a
 l : Map a b
 k' : a
```
LiquidHaskell is *unable* to deduce that the key \(k'\) definitely belongs in the left subtree. Well, let's ask ourselves: *why* must \(k'\) belong in the left subtree? From the input, we know \texttt{HasKey \(k'\)} m i.e. that \(k'\) is *somewhere* in \(m\). That is one of the following holds:

1. \(k' == k\) or,
2. \texttt{HasKey \(k'\)} \texttt{l} or,
3. \texttt{HasKey \(k'\)} \texttt{r}.

As the preceding guard \(k' == k\) fails, we (and LiquidHaskell) can rule out case (1). Now, what about the Map tells us that case (2) must hold, i.e. that case (3) cannot hold? The BST *invariant*, all keys in \(r\) exceed \(k\) which itself exceeds \(k'\). That is, all nodes in \(r\) are disequal to \(k'\) and hence \(k'\) cannot be in \(r\), ruling out case (3). Formally, we need the fact that:

\[
\forall \text{key}, \text{t} :: \text{Map} \{ \text{key}' : k \mid \text{key}' \neq \text{key} \} \text{ v } \Rightarrow \neg (\text{HasKey key } \text{t})
\]

**Conversion Lemmas** Unfortunately, LiquidHaskell *cannot automatically* deduce facts like the above, as they relate refinements of a container's *type parameters* (here: \(\text{key}' \neq \text{key}\), which refines the Maps first type parameter) with properties of the entire container (here: \texttt{HasKey key t}). Fortunately, it is easy to state, prove and use facts like the above, via *lemmas* which are just functions.  

**Defining Lemmas** To state a lemma, we need only convert it into a *type* by viewing universal quantifiers as function parameters, and implications as function types:

```haskell
{-# lemma_notMem :: key:k
 -> m:Map {k:k | k /= key} \text{v}
 -> \{v:Bool \mid \text{not} \ (\text{HasKey key m})\} @-

lemma_notMem _ Tip = True
lemma_notMem key (Node _ _ l r) = lemma_notMem key l &&
 lemma_notMem key r
```

**Proving Lemmas** Note how the signature for \texttt{lemma_notMem} corresponds exactly to the missing fact from above. The “output” type is a \texttt{Bool} refined with the proposition that we desire. We *prove* the lemma simply by *traversing* the tree which lets LiquidHaskell build up a proof for the output fact by inductively combining the proofs from the subtrees.
Using Lemmas To use a lemma, we need to instantiate it to the particular keys and trees we care about, by “calling” the lemma function, and forcing its result to be in the environment used to typecheck the expression where we want to use the lemma. Say what? Here’s how to use lemmas to verify get:

\[
\{-@ \text{get} :: (\text{Ord } k) \Rightarrow k \rightarrow m : \{\text{Map } k \times v \mid \text{HasKey } k \times m \} \rightarrow v @-\}
\]

\[
\text{get } k' \ (\text{Node } k \times v \times l \times r) \\
\mid k' = k \quad = v \\
\mid k' < k \quad = \text{assert } (\text{lemma_notMem } k' \times r) \$ \\
\quad \text{get } k' \times l \\
\mid \text{otherwise} = \text{assert } (\text{lemma_notMem } k' \times l) \$ \\
\quad \text{get } k' \times r
\]

\[
\text{get } \_ \times \text{Tip} \quad = \text{die } “\text{Lookup failed? Impossible.”}
\]

By calling \text{lemma_notMem} we create a dummy \text{Bool} refined with the fact \text{not } (\text{HasKey } k' \times r) (resp. \text{not } (\text{HasKey } k' \times l)). We force the calls to \text{get } k' \times l (resp. \text{get } k' \times r) to be typechecked using the materialized refinement by wrapping the calls in \text{assert}:

\[
\text{assert } \_ \times x = x
\]

Ghost Values This technique of materializing auxiliary facts via ghost values is a well known idea in program verification. Usually, one has to take care to ensure that ghost computations do not interfere with the regular computations. If we had to actually execute \text{lemma_notMem} it would wreck the efficient logarithmic lookup time, assuming we kept the trees balanced, as we would traverse the entire tree instead of just the short path to a node.  

Laziness comes to our rescue: as the ghost value is (trivially) not needed, it is never computed. In fact, it is straightforward to entirely \text{erase} the call in the compiled code, which lets us freely assert such lemmas to carry out proofs, without paying any runtime penalty. In an eager language we would have to do a bit of work to specifically mark the computation as a ghost or irrelevant but in the lazy setting we get this for free.

Exercise 9.5 (Membership Test). Capisce? Fix the definition of \text{mem} so that it verifiably implements the given signature.

\[
\{-@ \text{mem} :: (\text{Ord } k) \Rightarrow k \rightarrow m : \{\text{Map } k \times v \} \rightarrow \{v : \_ \mid v \leftrightarrow \text{HasKey } k \times m\} @-\}
\]

\[
\text{mem } k' \ (\text{Node } k \_ \times l \times r) \\
\mid k' = k \quad = \text{True}
\]

\[
^4 \text{Which is what makes dynamic contract checking inefficient for such invariants.}
\]
\[
\begin{aligned}
| k' < k & = \text{mem } k' \ l \\
| \text{otherwise} & = \text{mem } k' \ r \\
\text{mem } \_ \ \text{Tip} & = \text{False}
\end{aligned}
\]

**Exercise 9.6** (Fresh). **To make sure you really understand this business of ghosts values and proofs, complete the implementation of the following function which returns a fresh integer that is distinct from all the values in its input list:**

\[
\{-@ \text{fresh} :: \text{xs} : [\text{Int}] \to \{v : \text{Int} \mid \text{not (Elem } v \ \text{xs)}\} \@-\}
\]

fresh = undefined

To refresh your memory, here are the definitions for Elem we saw earlier:

\[
\{-@ \text{predicate Elem } X \ \text{Y} = \text{In } (\text{elems } \text{Y}) \@-\}
\{-@ \text{measure elems } \@-\}
\]

elems [] = \text{empty}
elems (x:xs) = (\text{singleton } x) \unicode{x2632} \text{union} \ (\text{elems } \text{xs})

**Recap**

In this chapter we saw how to combine several of the techniques from previous chapters in a case study. We learned how to:

1. Define an API for associative maps that used refinements to track the set of keys stored in a map, in order to prevent lookup failures, the NullPointerException errors of the functional world,

2. Use the API to implement a small interpreter that is guaranteed to never fail with UnboundVariable errors, as long as the input expressions were closed,

3. Implement the API using Binary Search Trees; in particular, using ghost lemmas to assert facts that LiquidHaskell is otherwise unable to deduce automatically.
10

Case Study: Pointers & Bytes

A large part of the allure of Haskell is its elegant, high-level ADTs that ensure that programs won’t be plagued by problems like the infamous SSL heartbleed bug. However, another part of Haskell’s charm is that when you really really need to, you can drop down to low-level pointer twiddling to squeeze the most performance out of your machine. But of course, that opens the door to the heartbleeds.

Wouldn’t it be nice to have our cake and eat it too? Wouldn’t it be great if we could twiddle pointers at a low-level and still get the nice safety assurances of high-level types? Lets see how LiquidHaskell lets us have our cake and eat it too.

HeartBleeds in Haskell

Modern Languages like Haskell are ultimately built upon the foundation of C. Thus, implementation errors could open up unpleasant vulnerabilities that could easily slither past the type system and even code inspection. As a concrete example, lets look at a function that uses the ByteString library to truncate strings:

\[
\text{chop} \quad :: \quad \text{String} \rightarrow \text{Int} \rightarrow \text{String}
\]

\[
\text{chop}\ ' \ s \ n = \ s'
\]

\[
\text{where}
\]

\[
\begin{align*}
\text{b} & = \text{pack} \ s & \text{-- down to low-level} \\
\text{b'} & = \text{unsafeTake} \ n \ \text{b} & \text{-- grab n chars} \\
\text{s'} & = \text{unpack} \ \text{b'} & \text{-- up to high-level}
\end{align*}
\]

First, the function packs the string into a low-level bytestring b, then it grabs the first n characters from b and translates them back into a high-level String. Lets see how the function works on a small test:

\[
\text{ghci}\ > \ \text{let ex} = "\text{Ranjit Loves Burritos}"
\]
We get the right result when we chop a *valid* prefix:

ghci> chop' ex 10
"Ranjit Lov"

But, as illustrated in Figure 10.1, the machine silently reveals (or more colorfully, *bleeds*) the contents of adjacent memory or if we use an *invalid* prefix:

ghci> chop' ex 30
"Ranjit Loves Burritos\NUL\201\&1j\DC3\SOH\NUL"

Figure 10.1: Can we prevent the program from leaking secrets via overflows?

**Types against Overflows** Now that we have stared the problem straight in the eye, look at how we can use LiquidHaskell to prevent the above at compile time. To this end, we decompose the system into a hierarchy of levels (i.e. modules). Here, we have three levels:

1. *Machine* level Pointers
2. *Library* level ByteString
3. *User* level Application

Our strategy, as before, is to develop an *refined API* for each level such that errors at each level are prevented by using the typed interfaces for the lower levels. Next, let's see how this strategy lets us safely manipulate pointers.

**Low-level Pointer API**

To get started, let's look at the low-level pointer API that is offered by GHC and the run-time. First, let's see who the *dramatis personae* are and how they might let heartbleeds in. Then we will see how to batten down the hatches with LiquidHaskell.

Pointers are an (abstract) type `Ptr a` implemented by GHC.

```haskell
-- | A value of type `Ptr a` represents a pointer to an object,
-- or an array of objects, which may be marshalled to or from
```
-- Haskell values of type `a`.

data Ptr a

**Foreign Pointers** are *wrapped* pointers that can be exported to and from C code via the **Foreign Function Interface**.

data ForeignPtr a

To **Create** a pointer we use `mallocForeignPtrBytes n` which creates a *Ptr* to a buffer of size `n` and wraps it as a `ForeignPtr`.

`mallocForeignPtrBytes :: Int -> ForeignPtr a`

To **Unwrap** and actually use the `ForeignPtr` we use

`withForeignPtr :: ForeignPtr a -- pointer
   -> (Ptr a -> IO b) -- action
   -> IO b -- result`

That is, `withForeignPtr fp act` lets us execute a action `act` on the actual `Ptr` wrapped within the `fp`. These actions are typically sequences of *dereferences*, i.e. reads or writes.

To **Dereference** a pointer, i.e. to read or update the contents at the corresponding memory location, we use `peek` and `poke` respectively.

`peek :: Ptr a -> IO a -- Read`
`poke :: Ptr a -> a -> IO () -- Write`

**For Fine Grained Access** we can directly shift pointers to arbitrary offsets using the *pointer arithmetic* operation `plusPtr p off` which takes a pointer `p` an integer `off` and returns the address obtained shifting `p` by `off`:

`plusPtr :: Ptr a -> Int -> Ptr b`

**Example** That was rather dry; lets look at a concrete example of how one might use the low-level API. The following function allocates a block of 4 bytes and fills it with zeros:

```haskell
zero4 = do fp <- mallocForeignPtrBytes 4
 withForeignPtr fp $ \p -> do
 poke (p `plusPtr` 0) zero
 poke (p `plusPtr` 1) zero
 poke (p `plusPtr` 2) zero
```
While the above is perfectly all right, a small typo could easily slip past the type system (and run-time!) leading to hard to find errors:

```haskell
zero4' = do fp <- mallocForeignPtrBytes 4
 withForeignPtr fp $ \p -> do
 poke (p `plusPtr` 0) zero
 poke (p `plusPtr` 1) zero
 poke (p `plusPtr` 2) zero
 poke (p `plusPtr` 3) zero
 return fp

 where
 zero = 0 :: Word8
```

### A Refined Pointer API

Wouldn’t it be great if we had an assistant to helpfully point out the error above as soon as we wrote it? We will use the following strategy to turn LiquidHaskell into such an assistant:

1. **Refine** pointers with allocated buffer size,
2. **Track** sizes in pointer operations,
3. **Enforce** pointer are valid at reads and writes.

To **Refine** Pointers with the size of their associated buffers, we can use an **abstract measure**, i.e. a measure specification without any underlying implementation.

```
-- | Size of 'Ptr'
measure plen :: Ptr a -> Int

-- | Size of 'ForeignPtr'
measure fplen :: ForeignPtr a -> Int
```

It is helpful to define aliases for pointers of a given size N:

```
type PtrN a N = (v:Ptr a | plen v = N)
type ForeignPtrN a N = (v:ForeignPtr a | fplen v = N)
```

**Abstract Measures** are extremely useful when we don’t have a concrete implementation of the underlying value, but we know

---

3 In Vim or Emacs or online, you’d see the error helpfully highlighted.
that the value exists. Here, we don’t have the value – inside Haskell – because the buffers are manipulated within C. However, this is no cause for alarm as we will simply use measures to refine the API, not to perform any computations. ¹

To Refine Allocation we stipulate that the size parameter be non-negative, and that the returned pointer indeed refers to a buffer with exactly n bytes:

\[
\text{mallocForeignPtrBytes :: n:Nat} \rightarrow \text{ForeignPtr} \ a \ n
\]

To Refine Unwrapping we specify that the action gets as input, an unwrapped \(\text{Ptr}\) whose size equals that of the given ForeignPtr.

\[
\text{withForeignPtr :: fp:ForeignPtr} \ a \rightarrow (\text{Ptr} \ a \ (\text{flen} \ fp) \rightarrow I\ O \ b) \rightarrow I\ O \ b
\]

This is a rather interesting higher-order specification. Consider a call withForeignPtr fp act. If the act requires a \(\text{Ptr}\) whose size exceeds that of \(fp\) then LiquidHaskell will flag a (subtyping) error indicating the overflow. If instead the act requires a buffer of size less than \(fp\) then it is always safe to run the act on a larger buffer. For example, the below variant of \text{zeroT} where we only set the first three bytes is fine as the \text{act}, namely the function \(\lambda p \rightarrow \ldots\), can be typed with the requirement that the buffer \(p\) has size 4, even though only 3 bytes are actually touched.

\[
\begin{align*}
\text{zero3} = & \ \text{do} \ fp \leftarrow \text{mallocForeignPtrBytes} \ 4 \\
& \text{withForeignPtr} \ fp \ \$ \ \lambda p \rightarrow \text{do} \\
& \quad \text{poke} \ (p \ \text{\'plusPtr\' 0}) \ \text{zero} \\
& \quad \text{poke} \ (p \ \text{\'plusPtr\' 1}) \ \text{zero} \\
& \quad \text{poke} \ (p \ \text{\'plusPtr\' 2}) \ \text{zero} \\
& \quad \text{return} \ fp \\
& \text{where} \\
& \quad \text{zero} = [\ 0 \ ::= \text{Word8} ]
\end{align*}
\]

To Refine Reads and Writes we specify that they can only be done if the pointer refers to a non-empty (remaining) buffer. That is, we define an alias:

\[
\text{type OkPtr} \ a = \{ \text{v:Ptr} \ a \ | \ 0 < \text{flen} \ v \}
\]

that describes pointers referring to non-empty buffers (of strictly positive \text{flen}), and then use the alias to refine:
peek :: OkPtr a -> IO a
poke :: OkPtr a -> a -> IO ()

In essence the above type says that no matter how arithmetic was
used to shift pointers around, when the actual dereference happens,
the size remaining after the pointer must be non-negative, so that a
byte can be safely read from or written to the underlying buffer.

To Refine the Shift operations, we simply check that the pointer
remains within the bounds of the buffer, and update the plen to
reflect the size remaining after the shift: 5

plusPtr :: p:Ptr a -> off:BNat (plen p) -> PtrN b (plen p - off)

using the alias BNat, defined as:

type BNat N = {v:Nat | v <= N} 6

Types Prevent Overflows Let's revisit the zero-fill example from
above to understand how the refinements help detect the error:

```haskell
exBad = do fp <- mallocForeignPtrBytes 4
 withForeignPtr fp $ \p -> do
 poke (p `plusPtr` 0) zero
 poke (p `plusPtr` 1) zero
 poke (p `plusPtr` 2) zero
 poke (p `plusPtr` 5) zero -- LH complains
 return fp
 where
 zero = 0 :: Word8
```

Let's read the tea leaves to understand the above error:

Error: Liquid Type Mismatch
Inferred type
    VV : {VV : Int | VV == ?a && VV == 5}

not a subtype of Required type
    VV : {VV : Int | VV <= plen p}

in Context
    zero : {zero : Word8 | zero == ?b}
    VV : {VV : Int | VV == ?a && VV == (5 : Int)}
    fp : {fp : ForeignPtr a | fplen fp == ?c && 0 <= fplen fp}
    p : {p : Ptr a | fplen fp == plen p && ?c <= plen p && ?b <= plen p && zero <= plen p}

5 This signature precludes left or backward shifts, for that there is an
   analogous minusPtr which we elide for simplicity.

6 Did you notice that we have strengthened the type of plusPtr to prevent
   the pointer from wandering outside the boundary of the buffer? We could
   instead use a weaker requirement for plusPtr that omits this requirement,
   and instead have the error be flagged when the pointer was used to read or
   write memory.
The error says we’re bumping \( p \) up by \( V = 5 \) using \( \text{plusPtr} \) but the latter requires that bump-offset be within the size of the buffer referred to by \( p \), i.e. \( V \leq \text{plen} \ p \). Indeed, in this context, we have:

\[
\begin{align*}
\text{p} & : \{ p : \text{Ptr} \ a \ | \ \text{flen} \ fp = \text{plen} \ p \ \&\& \ ?c \leq \text{plen} \ p \ \&\& \ ?b \leq \text{plen} \ p \ \&\& \ \text{zero} \leq \text{plen} \ p \} \\
\text{fp} & : \{ fp : \text{ForeignPtr} \ a \ | \ \text{flen} \ fp = ?c \ \&\& \ \text{zero} \leq \text{flen} \ fp \}
\end{align*}
\]

that is, the size of \( p \), namely \( \text{flen} \ p \) equals the size of \( fp \), namely \( \text{flen} \ fp \) (thanks to the \( \text{withForeignPtr} \) call). The latter equals to \( ?c \) which is 4 bytes. Thus, since the offset 5 is not less than the buffer size 4, LiquidHaskell cannot prove that the call to \( \text{plusPtr} \) is safe, hence the error.

**Assumptions vs Guarantees**

At this point you ought to wonder: where is the code for \( \text{peek} \), \( \text{poke} \) or \( \text{mallocForeignPtr} \) and so on? How can we be sure that the types we assigned to them are in fact legitimate?

**Frankly, we cannot** as those functions are externally implemented (in this case, in C), and hence, invisible to the otherwise all-seeing eyes of LiquidHaskell. Thus, we are assuming or trusting that those functions behave according to their types. Put another way, the types for the low-level API are our specification for what low-level pointer safety. We shall now guarantee that the higher level modules that build upon this API in fact use the low-level function in a manner consistent with this specification.

Assumptions are a **Feature** and not a bug, as they let us to verify systems that use some modules for which we do not have the code. Here, we can assume a boundary specification, and then guarantee that the rest of the system is safe with respect to that specification.  

**ByteString API**

Next, lets see how the low-level API can be used to implement to implement **ByteStrings**, in a way that lets us perform fast string operations without opening the door to overflows.

A **ByteString** is implemented as a record of three fields:
data ByteString = BS {
    bPtr :: ForeignPtr Word8
    , bOff :: !Int
    , bLen :: !Int
}

• bPtr is a pointer to a block of memory,

• bOff is the offset in the block where the string begins,

• bLen is the number of bytes from the offset that belong to the string.

These entities are illustrated in Figure 10.2; the green portion represents the actual contents of a particular ByteString. This representation makes it possible to implement various operations like computing prefixes and suffixes extremely quickly, simply by pointer arithmetic.

In a Legal ByteString the start (bOff) and end (bOff + bLen) offsets lie inside the buffer referred to by the pointer bPtr. We can formalize this invariant with a data definition that will then make it impossible to create illegal ByteStrings:

{-@ data ByteString = BS {
    bPtr :: ForeignPtr Word8
    , bOff :: (v:Nat| v <= fplen bPtr)
    , bLen :: (v:Nat| v + bOff <= fplen bPtr)
} @-}

The refinements on bOff and bLen correspond exactly to the legality requirements that the start and end of the ByteString be within the block of memory referred to by bPtr.

For brevity let's define an alias for ByteStrings of a given size:
LEGAL BYTESTRINGS can be created by directly using the constructor, as long as we pass in suitable offsets and lengths. For example,

{-@ good1 :: IO (ByteStringN 5) @} -
good1 = do fp <- mallocForeignPtrBytes 5
        return (BS fp 0 5)

creates a valid ByteString of size 5; however we need not start at the beginning of the block, or use up all the buffer, and can instead create ByteStrings whose length is less than the size of the allocated block, as shown in good2 whose length is 2 while the allocated block has size 5.

{-@ good2 :: IO (ByteStringN 2) @} -
good2 = do fp <- mallocForeignPtrBytes 5
        return (BS fp 3 2)

ILLEGAL BYTESTRINGS are rejected by LiquidHaskell. For example, bad1’s length is exceeds its buffer size, and is flagged as such:

bad1 = do fp <- mallocForeignPtrBytes 3
        return (BS fp 0 10)

Similarly, bad2 does have 2 bytes but not if we start at the offset of 2:

bad2 = do fp <- mallocForeignPtrBytes 3
        return (BS fp 2 2)

Exercise 10.1 (Legal ByteStrings). Modify the definitions of bad1 and bad2 so they are accepted by LiquidHaskell.

MEASURES ARE GENERATED FROM FIELDS in the datatype definition. As GHC lets us use the fields as accessor functions, we can refine the types of those functions to specify their behavior to LiquidHaskell. For example, we can type the (automatically generated) field-accessor function blen so that it actually returns the exact size of the ByteString argument.

{-@ blen :: b[ByteString] -> {v: Nat | v = blen b} @} -

To SAFELY CREATE a ByteString the implementation defines a higher order create function, that takes a size n and accepts a fill action,
and runs the action after allocating the pointer. After running the action, the function tucks the pointer into and returns a ByteString of size n.

```haskell
{-@ create :: n:Nat -> (Ptr Word8 -> IO ()) -> ByteString n @-}
create n fill = unsafePerformIO $ do
 fp <- mallocForeignPtrBytes n
 withForeignPtr fp fill
 return (BS fp @ 0 n)
```

**Exercise 10.2 (Create).** *Why does LiquidHaskell reject the following function that creates a ByteString corresponding to "GHC"?*

```haskell
bsGHC = create 3 $ \p -> do
 poke (p `plusPtr` 0) (c2w 'G')
 poke (p `plusPtr` 1) (c2w 'H')
 poke (p `plusPtr` 2) (c2w 'C')
```

*Hint:* The function writes into 3 slots starting at p. How big should \( p\text{len} \) be to allow this? What type does LiquidHaskell infer for \( p \) above? Does it meet the requirement? Which part of the specification or implementation needs to be modified so that the relevant information about \( p \) becomes available within the do-block above? Make sure you figure out the above before proceeding.

To Pack a String into a ByteString we simply call create with the appropriate fill action:8

```haskell
pack str = create' n $ \p -> go p xs
 where
 n = length str
 xs = map c2w str
 go p (x:xs) = poke p x >> go (plusPtr p 1) xs
 go _ [] = return ()
```

**Exercise 10.3 (Pack).** We can compute the size of a ByteString by using the function: Fix the specification for pack so that (it still typechecks!) and furthermore, the following QuickCheck-style property is proved.

```haskell
{-@ prop_pack_length :: String -> TRUE @-}
prop_pack_length xs = blen (pack xs) == length xs
```

*Hint:* Look at the type of length, and recall that len is a numeric measure denoting the size of a list.
The magic of inference ensures that pack just works. Notice there is a tricky little recursive loop go that is used to recursively fill in the ByteString and actually, it has a rather subtle type signature that LiquidHaskell is able to automatically infer.

Exercise 10.4 (Pack Invariant). Exercise 10.1. ⋆ Still, we’re here to learn, so can you write down the type signature for the loop so that the below variant of pack is accepted by LiquidHaskell (Do this without cheating by peeping at the type inferred for go above!)

```
packEx str = create' n $ \p -> pLoop p xs

where
 n = length str
 xs = map c2w str

{-@ pLoop :: (Storable a) => p:Ptr a -> xs:[a] -> IO () @-}

pLoop p (x:xs) = poke p x >> pLoop (plusPtr p 1) xs
pLoop _ [] = return ()
```

Hint: Remember that len xs denotes the size of the list xs.

Exercise 10.5 (Unsafe Take and Drop). The functions unsafeTake and unsafeDrop respectively extract the prefix and suffix of a ByteString from a given position. They are really fast since we only have to change the offsets. But why does LiquidHaskell reject them? Can you fix the specifications so that they are accepted?

```
{-@ unsafeTake :: n:Nat -> b:_ -> ByteStringN n @-}

unsafeTake n (BS x s _) = BS x s n

{-@ unsafeDrop :: n:Nat -> b:_ -> ByteStringN {bLen b - n} @-}

unsafeDrop n (BS x s l) = BS x (s + n) (l - n)
```

Hint: Under what conditions are the returned ByteStrings legal?

To unpack a ByteString into a plain old String, we essentially run pack in reverse, by walking over the pointer, and reading out the characters one by one till we reach the end:

```
unpack :: ByteString -> String
unpack (BS _ _ @) = []
unpack (BS ps s l) = unsafePerformIO
 $ withForeignPtr ps
 $ \p -> go (p `plusPtr` s) (l - 1) []
```
where
{-@ go :: p:_ -> n:_ -> acc:_ -> IO {v:_ | true } @-}
go p @ acc = peekAt p @ >>\ e \to return (w2c e : acc)
go p n acc = peekAt p n >>\ e \to go p (n-1) (w2c e : acc)
peekAt p n = peek (p `plusPtr` n)

Exercise 10.6 (Unpack). * Fix the specification for unpack so that the below QuickCheck style property is proved by LiquidHaskell.

{-@ prop_unpack_length :: ByteString -> TRUE @-}
prop_unpack_length b = blen b == length (unpack b)

Hint: You will also have to fix the specification of the helper go. Can you determine the output refinement should be (instead of just true)? How big is the output list in terms of p, n and acc.

Application API

Finally, let’s revisit our potentially “bleeding” chop function to see how the refined ByteString API can prevent errors. We require that the prefix size n be less than the size of the input string s:

{-@ chop :: s:String -> n:BNat (len s) -> String @-}
chop s n = s'
where
b = pack s   -- down to low-level
b' = unsafeTake n b   -- grab n chars
s' = unpack b'   -- up to high-level

Overflows are prevented by LiquidHaskell, as it rejects calls to chop where the prefix size is too large which is what led to the overflow that spilled the contents of memory after the string (cf. Figure 10.1). In the code below, the first use of chop which defines ex6 is accepted as 6 <= 1en ex but the second call is rejected as 30 > 1en ex.

demo = [ex6, ex30]
where
ex = ['L','I','Q','U','I','D']
ex6 = chop ex 6   -- accepted by LH
ex30 = chop ex 30  -- rejected by LH

Fix the specification for chop so that the following property is proved:
Exercise 10.7 (Checked Chop). In the above, we know statically that the string is longer than the prefix, but what if the string and prefix are obtained dynamically, e.g. as inputs from the user? Fill in the implementation of `ok` below to ensure that `chop` is called safely with user specified values:

```haskell
{-@ prop_chop_length :: String -> Nat -> TRUE @-}
prop_chop_length s n
 | n <= length s = length (chop s n) == n
 | otherwise = True

safeChop :: String -> Int -> String
safeChop str n
 | ok = chop str n
 | otherwise = ""
 where
 ok = True

queryAndChop :: IO String
queryAndChop = do
 putStrLn "Give me a string:
 str <- getline
 putStrLn "Give me a number:"
 ns <- getline
 let n = read ns :: Int
 return $ safeChop str n

Nested ByteStrings

For a more in-depth example, let’s take a look at `group`, which transforms strings like `"foobaaar"` into lists of strings like `["f", "oo", "b", "aaa", "r"]`. The specification is that `group` should produce a

1. list of non-empty ByteStrings,
2. the sum of whose lengths equals that of the input string.

Non-empty ByteStrings are those whose length is non-zero:

```haskell
{-@ predicate Null B = bLen B == 0 @-}
{-@ type ByteStringNE = {v:ByteString | not (Null v)} @-}
```

We can use these to enrich the API with a `null` check:

```haskell
{-@ null :: b:_ -> {v:Bool | v <=> Null b} @-}
null (BS _ _ 1) = 1 == 0
```
This check is used to determine if it is safe to extract the head and tail of the `ByteString`, we can use refinements to ensure the safety of the operations and also track the sizes.\footnote{\texttt{peekByteOff p i} is equivalent to \texttt{peek (plusPtr p i)}.}

\begin{verbatim}
{-@ unsafeHead :: ByteStringNE -> Word8 @-}
unsafeHead (BS x s _) = unsafePerformIO $
 withForeignPtr x $ \\p ->
 peekByteOff p s

{-@ unsafeTail :: b:ByteStringNE -> ByteStringN {bLen b -1} @-}
unsafeTail (BS ps s l) = BS ps (s + 1) (l - 1)
\end{verbatim}

The `Group` function recursively calls `spanByte` to carve off the next group, and then returns the accumulated results:

\begin{verbatim}
{-@ group :: b:_ -> {v: [ByteStringNE] | bsLen v = bLen b} @-}
group xs
 | null xs = []
 | otherwise = let y = unsafeHead xs
 (ys, zs) = spanByte y (unsafeTail xs)
 in (y `cons` ys) : group zs
\end{verbatim}

The first requirement, that the groups be non-empty is captured by the fact that the output is a `[ByteStringNE]`. The second requirement, that the sum of the lengths is preserved, is expressed by a writing a numeric measure:

\begin{verbatim}
{-@ measure bsLen @-}
bsLen :: [ByteString] -> Int
bsLen [] = 0
bsLen (b:bs) = bLen b + bsLen bs
\end{verbatim}

`SpanByte` does a lot of the heavy lifting. It uses low-level pointer arithmetic to find the \textit{first} position in the `ByteString` that is different from the input character \texttt{c} and then splits the `ByteString` into a pair comprising the prefix and suffix at that point.

\begin{verbatim}
{-@ spanByte :: Word8 -> b:ByteString -> ByteString2 b @-}
spanByte c ps@(BS x s l)
 = unsafePerformIO $ withForeignPtr x $ \\p ->
 go (p `plusPtr` s) 0
 where
 go p i
\end{verbatim}
| i > 1 = return (ps, empty)
| otherwise = do c' <- peekByteOff p i
 if c /= c'
 then return $ splitAt i
 else go p (i+1)

splitAt i = (unsafeTake i ps, unsafeDrop i ps)

LiquidHaskell infers that \(0 \leq i \leq 1\) and therefore that all of the
memory accesses are safe. Furthermore, due to the precise specifications
given to unsafeTake and unsafeDrop, it is able to prove that the
output pair’s lengths add up to the size of the input ByteString.

{-@ type ByteString2 B
 = \{ v:._ | bLen (fst v) + bLen (snd v) = bLen B \} @-}

Recap: Types Against Overflows

In this chapter we saw a case study illustrating how measures and
refinements enable safe low-level pointer arithmetic in Haskell. The
take away messages are that we can:

1. compose larger systems from layers of smaller ones,
2. refine APIs for each layer, which can be used to
3. design and validate the layers above.

We saw this recipe in action by developing a low-level Pointer
API, using it to implement fast ByteString APIs, and then building
some higher-level functions on top of the ByteString.

The Trusted Computing Base in this approach includes exactly
those layers for which the code is not available, for example, because
they are implemented outside the language and accessed via the
FFI as with mallocForeignPtrBytes and peek and poke. In this case,
we can make progress by assuming the APIs hold for those layers
and verify the rest of the system with respect to that API. It is im-
portant to note that in the entire case study, it is only the above FFI
signatures that are trusted; the rest are all verified by LiquidHaskell.
Case Study: AVL Trees

One of the most fundamental abstractions in computing is that of a collection of values – names, numbers, records – into which we can rapidly insert, delete and check for membership.

Trees offer an attractive means of implementing collections in the immutable setting. We can order the values to ensure that each operation takes time proportional to the path from the root to the datum being operated upon. If we additionally keep the tree balanced then each path is small (relative to the size of the collection), thereby giving us an efficient implementation for collections.

As in real life maintaining order and balance is rather easier said than done. Often we must go through rather sophisticated gymnastics to ensure everything is in its right place. Fortunately, LiquidHaskell can help. Let's see a concrete example, that should be familiar from your introductory data structures class: the Georgy Adelson-Velsky and Landis' or AVL Tree.

AVL Trees

An AVL tree is defined by the following Haskell datatype:

```haskell
data AVL a =
  Leaf
  | Node { key :: a, -- value
         l :: AVL a, -- left subtree
         r :: AVL a, -- right subtree
         ah :: Int, -- height
        }
  deriving (Show)
```

While the Haskell type signature describes any old binary tree, an
AVL tree like that shown in Figure 11.1 actually satisfies two crucial invariants: it should be binary search ordered and balanced.

A Binary Search Ordered tree is one where at each Node, the values of the left and right subtrees are strictly less and greater than the values at the node. In the tree in Figure 11.1 the root has value 50 while its left and right subtrees have values in the range 9–23 and 54–76 respectively. This holds at all nodes, not just the root. For example, the node 12 has left and right children strictly less and greater than 12.

A Balanced tree is one where at each node, the heights of the left and right subtrees differ by at most 1. In Figure 11.1, at the root, the heights of the left and right subtrees are the same, but at the node 72 the left subtree has height 2 which is one more then the right subtree.

The Invariants Lead To Fast Operations. Order ensures that there is at most a single path of left and right moves from the root at which an element can be found; balance ensures that each such path in the tree is of size $O(\log n)$ where n is the numbers of nodes. Thus, together they ensure that the collection operations are efficient: they take time logarithmic in the size of the collection.

Specifying AVL Trees

The tricky bit is to ensure order and balance. Before we can ensure anything, lets tell LiquidHaskell what we mean by these terms, by defining legal or valid AVL trees.

To Specify Order we just define two aliases AVL< and AVL> – read AVL-left and AVL-right – for trees whose values are strictly less than and greater than some value x:

```haskell
-- | Trees with value less than X {-@ type AVLL a X = AVL {v:a | v < X} @-}

-- | Trees with value greater than X {-@ type AVLR a X = AVL {v:a | X < v} @-}
```

The Real Height of a tree is defined recursively as 0 for Leavefs and one more than the larger of left and right subtrees for Nodes. Note that we cannot simply use the ah field because that’s just some arbitrary Int – there is nothing to prevent a buggy implementation.
A Reality Check predicate ensures that a value v is indeed the real height of a node with subtrees l and r:

```haskell
{-@ inline isReal @-}
isReal v l r = v == nodeHeight l r
```

A Node is n-Balanced if its left and right subtrees have a (real) height difference of at most n. We can specify this requirement as a predicate isBal l r n

```haskell
{-@ inline isBal @-}
isBal l r n = 0 - n <= d && d <= n
    where
        d = realHeight l - realHeight r
```

A Legal AVL Tree can now be defined via the following refined data type, which states that each Node is 1-balanced, and that the saved height field is indeed the real height:

```haskell
{-@ data AVL a = Leaf
     | Node { key :: a
             , l :: AVL a key
             , r :: {v:AVLR a key | isBal l v 1}
             , ah :: {v:Nat | isReal v l r}
             } @-}
Smart Constructors

Let’s use the type to construct a few small trees which will also be handy in a general collection API. First, let’s write an alias for trees of a given height:

```
-- | Trees of height N
{-# type AVLN a N = {v: AVL a | realHeight v = N} #-}

-- | Trees of height equal to that of another T
{-# type AVLT a T = AVLN a {realHeight T} #-}
```

**An Empty** collection is represented by a Leaf, which has height 0:

```
{-@ empty :: AVLN a 0 #-}
empty = Leaf
```

**Exercise 11.1** (Singleton). Consider the function `singleton` that builds an AVL tree from a single element. Fix the code below so that it is accepted by LiquidHaskell.

```
{-@ singleton :: a -> AVLN a 1 #-}
singleton x = Node x empty empty 0
```

As you can imagine, it can be quite tedious to keep the saved height field `ah` in sync with the real height. In general in such situations, which arose also with lazy queues, the right move is to eschew the data constructor and instead use a smart constructor that will fill in the appropriate values correctly.  

The **Smart Constructor** `node` takes as input the node’s value `x`, left and right subtrees `l` and `r` and returns a tree by filling in the right value for the height field.

```
{-@ mkNode :: a -> l:AVL a -> r:AVL a -> AVLN a {nodeHeight l r} #-}

mkNode v l r = Node v l r h

where
 h = 1 + max hl hr
 hl = getHeight l
 hr = getHeight r
```

**Exercise 11.2** (Constructor). Unfortunately, LiquidHaskell rejects the above smart constructor `node`. Can you explain why? Can you fix the code (implementation or specification) so that the function is accepted?
Hint: Think about the (refined) type of the actual constructor Node, and the properties it requires and ensures.

Inserting Elements

Next, let's turn our attention to the problem of adding elements to an AVL tree. The basic strategy is this:

1. Find the appropriate location (per ordering) to add the value,
2. Replace the Leaf at that location with the singleton value.

If you prefer the spare precision of code to the informality of English, here is a first stab at implementing insertion:

```haskell
{-# insert0 :: (Ord a) => a -> AVL a -> AVL a @-#
insert0 y t@(Node x l r _) |
 y < x = insL0 y t |
 x < y = insR0 y t |
 otherwise = t
insert0 y Leaf = singleton y

insL0 y (Node x l r _) = node x (insert0 y l) r
insR0 y (Node x l r _) = node x l (insert0 y r)
```

Unfortunately insert0 does not work. If you did the exercise above, you can replace it with mkNode and you will see that the above function is rejected by LiquidHaskell. The error message would essentially say that at the calls to the smart constructor, the arguments violate the balance requirement.

Insertion Increases The Height of a sub-tree, making it too large relative to its sibling. For example, consider the tree t0 defined as:

```haskell
ghci> let t0 = Node { key = 'a'
 , l = Leaf
 , r = Node {key = 'd'
 , l = Leaf
 , r = Leaf
 , ah = 1 }
 , ah = 2}
```

If we use insert0 to add the key 'e' (which goes after 'd') then we end up with the result:
ghci> insert0 'e' t0
Node { key = 'a'
  , l = Leaf
  , r = Node { key = 'd'
                , l = Leaf
                , r = Node { key = 'e'
                              , l = Leaf
                              , r = Leaf
                              , ah = 1 }
                , ah = 2 }
  , ah = 3 }

In the above, illustrated in Figure 11.2 the value 'e' is inserted into
the valid tree t0; it is inserted using \texttt{insert0}, into the right subtree of t0
which already has height \(1\) and causes its height to go up to \(2\) which
is too large relative to the empty left subtree of height \(0\).

\textbf{LiquidHaskell catches the imbalance} by rejecting \texttt{insert0}.
The new value \texttt{y} is inserted into the right subtree \texttt{r}, which (may
already be bigger than the left by a factor of \(1\)). As insert can return
a tree with arbitrary height, possibly much larger than \(1\) and hence,
LiquidHaskell rejects the call to the constructor \texttt{node} as the balance
requirement does not hold.

\textbf{Two lessons} can be drawn from the above exercise. First, \texttt{insert}
may \textit{increase} the height of a tree by at most \(Q\). So, second, we need a way
to \textit{rebalance} sibling trees where one has height \(R\) more than the other.

\textbf{Rebalancing Trees}

The brilliant insight of Adelson-Velsky and Landis was that we can,
in fact, perform such a rebalancing with a clever bit of gardening.
Suppose we have inserted a value into the left subtree \texttt{l} to obtain a
new tree \texttt{l'} (the right case is symmetric.)

The relative heights of \texttt{l'} and \texttt{r} fall under one of three cases:

\begin{itemize}
  \item \textit{(RightBig)} \texttt{r} is two more than \texttt{l'},
  \item \textit{(LeftBig)} \texttt{l'} is two more than \texttt{r}, and otherwise
  \item \textit{(NoBig)} \texttt{l'} and \texttt{r} are within a factor of \(Q\),
\end{itemize}

\textbf{We can specify} these cases as follows.
The function `getHeight` accesses the saved height field.

```haskell
{-# inline leftBig #-}
leftBig l r = diff l r == 2

{-# inline rightBig #-}
rightBig l r = diff r l == 2

{-# inline diff #-}
diff s t = getHeight s - getHeight t
```

In `insL`, the `RightBig` case cannot arise as `l'` is at least as big as `l`, which was within a factor of `l` of `r` in the valid input tree `t`. In `NoBig`, we can safely link `l'` and `r` with the smart constructor as they satisfy the balance requirements. The `LeftBig` case is the tricky one: we need a way to shuffle elements from the left subtree over to the right side.

**What is a `LeftBig` tree?** Let's split into the possible cases for `l'`, immediately ruling out the `empty` tree because its height is `0` which cannot be `2` larger than any other tree.

- **(NoHeavy)** the left and right subtrees of `l'` have the same height,
- **(LeftHeavy)** the left subtree of `l'` is bigger than the right,
- **(RightHeavy)** the right subtree of `l'` is bigger than the left.

The **Balance Factor** of a tree can be used to make the above cases precise. Note that while the `getHeight` function returns the saved height (for efficiency), thanks to the invariants, we know it is in fact equal to the `realHeight` of the given tree.

```haskell
{-# measure balFac #-}
balFac Leaf = 0
balFac (Node _ _ n) = getHeight l - getHeight r
```

**Heaviness** can be encoded by testing the balance factor:

```haskell
{-# inline leftHeavy #-}
leftHeavy t = balFac t > 0
```
Adelson-Velsky and Landis observed that once you’ve drilled down into these three cases, the shuffling suggests itself.

In the **NoHeavy** case, illustrated in Figure 11.3, the subtrees 1l and 1r have the same height which is one more than that of r. Hence, we can link up 1r and r and link the result with 1. Here’s how you would implement the rotation. Note how the preconditions capture the exact case we’re in: the left subtree is **NoHeavy** and the right subtree is smaller than the left by 2. Finally, the output type captures the exact height of the result, relative to the input subtrees.

```haskell
{-@ ballL0 :: x:a
 -> l:{AVLL a x | noHeavy l}
 -> r:{AVLR a x | leftBig l r}
 -> AVLN a {realHeight 1 + 1}
 @-}
ballL0 v (Node lv 1l 1r _) r = node lv 1l (node v 1r r)
```

In the **LeftHeavy** case, illustrated in Figure 11.4, the subtree 1l is
larger than \( lr \); hence \( lr \) has the same height as \( r \), and again we can link up \( lr \) and \( r \) and link the result with \( l \). As in the \emph{NoHeavy} case, the input types capture the exact case, and the output the height of the resulting tree.

\begin{align*}
\{-@ \text{ballLL :: x:a} & \\
& \quad \rightarrow l:\{\text{AVLL a x | leftHeavy l}\} \\
& \quad \rightarrow r:\{\text{AVLR a x | leftBig l r}\} \\
& \quad \rightarrow \text{AVLT a l} \}
\end{align*}

\text{ballLL} v (\text{Node} lv ll lr _) r = \text{node} lv ll (\text{node} v lr r)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure}
\caption{Rotating when in the \emph{LeftBig, RightHeavy} case.}
\end{figure}

\textbf{In the RightHeavy} case, illustrated in Figure 11.5, the subtree \( lr \) is larger than \( ll \). We cannot directly link it with \( r \) as the result would again be too large. Hence, we split it further into its own subtrees \( lrl \) and \( lrr \) and link the latter with \( r \). Again, the types capture the requirements and guarantees of the rotation.

\begin{align*}
\{-@ \text{ballLR :: x:a} & \\
& \quad \rightarrow l:\{\text{AVLL a x | rightHeavy l}\} \\
& \quad \rightarrow r:\{\text{AVLR a x | leftBig l r}\} \\
& \quad \rightarrow \text{AVLT a l} \}
\end{align*}

\text{ballLR} v (\text{Node} lv ll lrr _) r
\quad = \text{node} lv (\text{node} ll lr rrr) (\text{node} v lr r)

The \emph{RightBig} cases are symmetric to the above cases where the left subtree is the larger one.

\textbf{Exercise 11.3} (RightBig, NoHeavy). \emph{Fix the implementation of ballR0 so that it implements the given type.}
Exercise 11.4 (RightBig, RightHeavy). Fix the implementation of balRR so that it implements the given type.

{-@ balRR :: x:a
  -> l: AVLL a x
  -> r: {AVLR a x | rightBig l r && rightHeavy r}
  -> AVLT a r
  @-}
balRR v l r = undefined

Exercise 11.5 (RightBig, LeftHeavy). Fix the implementation of balRL so that it implements the given type.

{-@ balRL :: x:a
  -> l: AVLL a x
  -> r: {AVLR a x | rightBig l r && leftHeavy r}
  -> AVLT a r
  @-}
balRL v l r = undefined

To correctly insert an element, we recursively add it to the left or right subtree as appropriate and then determine which of the above cases hold in order to call the corresponding rebalance function which restores the invariants.

{-@ insert :: a -> s:AVL a -> {t: AVL a | eqOrUp s t} @-}
insert y leaf = singleton y
insert y t@(Node x _ _)
  | y < x   = insL y t
  | y > x   = insR y t
  | otherwise = t

The refinement, eqOrUp says that the height of t is the same as s or goes up by at most 1.

{-@ inline eqOrUp @-}
eqOrUp s t = d == 0 || d == 1
  where
d        = diff t s
The hard work happens inside insL and insR. Here’s the first; it simply inserts into the left subtree to get $l’$ and then determines which rotation to apply.

```haskell
{-@ insL :: x:a
 -> t:{AVL a | x < key t && 0 < realHeight t}
 -> {v: AVL a | eqOrUp t v}
 @-}
insL a (Node v l r _)
 | isLeftBig && leftHeavy l’ = ballL v l’ r
 | isLeftBig && rightHeavy l’ = ballR v l’ r
 | isLeftBig
 = ball0 v l’ r
 | otherwise
 = node v l’ r
where
 isLeftBig = leftBig l’ r
 l’ = insert a l
```

**Exercise 11.6 (InsertRight).** * The code for insR is symmetric. To make sure you’re following along, why don’t you fill it in?

```haskell
{-@ insR :: x:a
 -> t:{AVL a | key t < x && 0 < realHeight t }
 -> {v: AVL a | eqOrUp t v}
 @-}
insR = undefined
```

**Refactoring Rebalance**

Next, let’s write a function to delete an element from a tree. In general, we can apply the same strategy as insert:

1. remove the element without worrying about heights,
2. observe that deleting can decrease the height by at most 1,
3. perform a rotation to fix the imbalance caused by the decrease.

We painted ourselves into a corner with insert: the code for actually inserting an element is intermingled with the code for determining and performing the rotation. That is, see how the code that determines which rotation to apply – leftBig, leftHeavy, etc. – is inside the insL which does the insertion as well. This is correct, but it means we would have to repeat the case analysis when deleting a value, which is unfortunate.
Instead lets refactor the rebalancing code into a separate function, that can be used by both insert and delete. It looks like this:

```haskell
{-@ bal :: x:a
 -> l:AVLL a x
 -> r:{AVLR a x | isBal l r 2}
 -> {t:AVL a | rebal l r t}
@-} bal v l r
| isLeftBig && leftHeavy l = balLL v l r
| isLeftBig && rightHeavy l = balLR v l r
| isLeftBig = balL0 v l r
| isRightBig && leftHeavy r = balRL v l r
| isRightBig && rightHeavy r = balRR v l r
| isRightBig = balR0 v l r
| otherwise = node v l r
where
 isLeftBig = leftBig l r
 isRightBig = rightBig l r
```

The `bal` function is a combination of the case-splits and rotation calls made by `insl` (and ahem, `insR`); it takes as input a value `x` and valid left and right subtrees for `x` whose heights are off by at most 2 because as we will have created them by inserting or deleting a value from a sibling whose height was at most 1 away. The `bal` function returns a valid AVL tree, whose height is constrained to satisfy the predicate `rebal l r t`, which says:

- (bigHt) The height of `t` is the same or one bigger than the larger of `l` and `r`, and
- (balHt) If `l` and `r` were already balanced (i.e. within 1) then the height of `t` is exactly equal to that of a tree built by directly linking `l` and `r`.

```haskell
{-@ inline rebal @-}
rebal l r t = bigHt l r t && balHt l r t

{-@ inline balHt @-}
balHt l r t = not (isBal l r 2) || isReal (realHeight t) l r

{-@ inline bigHt @-}
bigHt l r t = lBig && rBig
 where
```
Insert can now be written very simply as the following function that recursively inserts into the appropriate subtree and then calls bal to fix any imbalance:

```haskell
insert' :: a -> s:AVL a -> {t: AVL a | eqOrUp s t} @-
insert' a t@(Node v l r n)
 | a < v = bal v (insert' a l) r
 | a > v = bal v l (insert' a r)
 | otherwise = t
insert' a Leaf = singleton a
```

Deleting Elements

Now we can write the delete function in a manner similar to insert: the easy cases are the recursive ones; here we just delete from the subtree and summon bal to clean up. Notice that the height of the output t is at most 1 less than that of the input s.

```haskell
delete y (Node x l r _) =
 | y < x = bal x (delete y l) r
 | x < y = bal x l (delete y r)
 | otherwise = merge x l r
delete _ Leaf = Leaf
```

The tricky case is when we actually find the element that is to be removed. Here, we call merge to link up the two subtrees l and r after hoisting the smallest element from the right tree r as the new root which replaces the deleted element x.

```haskell
merge :: x:a -> l:AVL a x -> r:(AVLR a x | isBal l r l) -> {t: AVL a | bight l r t} @-
merge Leaf r = r
merge _ Leaf = 1
```
getMin recursively finds the smallest (i.e. leftmost) value in a tree, and returns the value and the remainder tree. The height of each remainder l' may be lower than l (by at most 1). Hence, we use bal to restore the invariants when linking against the corresponding right subtree r.

```
getMin (Node x Leaf r _) = (x, r)
getMin (Node x l r _) = (x', bal x l' r)
where
 (x', l') = getMin l
```

**Functional Correctness**

We just saw how to implement some tricky data structure gymnastics. Fortunately, with LiquidHaskell as a safety net we can be sure to have gotten all the rotation cases right and to have preserved the invariants crucial for efficiency and correctness. However, there is nothing in the types above that captures “functional correctness”, which, in this case, means that the operations actually implement a collection or set API, for example, as described here. Let's use the techniques from that chapter to precisely specify and verify that our AVL operations indeed implement sets correctly, by:

1. **Defining** the set of elements in a tree,
2. **Specifying** the desired semantics of operations via types,
3. **Verifying** the implementation.  

We've done this once before already, so this is a good exercise to solidify your understanding of that material.

**The Elements** of an AVL tree can be described via a measure defined as follows:

```
{-@ measure elems @-}
elems :: (Ord a) => AVL a -> S.Set a
elems (Node x l r _) = (S.singleton x) `S.union`
 (elems l) `S.union`
 (elems r)
elems Leaf = S.empty
```
Let us use the above measure to specify and verify that our AVL library actually implements a Set or collection API.

**Exercise 11.7 (Membership).** Complete the implementation of the implementation of member that checks if an element is in an AVL tree:

```haskell
-- FIXME: https://github.com/ucsd-progsys/liquidhaskell/issues/332
{-@ member :: (Ord a) => x:a -> t:AVL a -> {v: Bool | v <=> hasElem x t} @-} member x t = undefined

{-@ type BoolP P = {v:Boolean | v <=> P} @-}

{-@ inline hasElem @-}
hasElem x t = True
-- FIXME: hasElem x t = S.member x (elems t)
```

**Exercise 11.8 (Insertion).** Modify insert to obtain a function insertAPI that states that the output tree contains the newly inserted element (in addition to the old elements):

```haskell
{-@ insertAPI :: (Ord a) => a -> s:AVL a -> {t:AVL a | addElem x s t} @-} insertAPI x s = insert' x s

{-@ inline addElem @-}
addElem :: Ord a => a -> AVL a -> AVL a -> Bool
addElem x s t = True
-- FIXME: addElem x s t = (elems t) == (elems s) `S.union` (S.singleton x)
```

**Exercise 11.9 (Insertion).** Modify delete to obtain a function deleteAPI that states that the output tree contains the old elements minus the removed element:

```haskell
{-@ deleteAPI :: (Ord a) => a -> s:AVL a -> {t: AVL a | delElem x s t} @-} deleteAPI x s = delete x s

{-@ inline delElem @-}
delElem :: Ord a => a -> AVL a -> AVL a -> Bool
delElem x s t = True
-- FIXME: delElem x s t = (elems t) == (elems s) `S.difference` (S.singleton x)