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Introduction

One of the great things about Haskell is its brainy type system that
allows one to enforce a variety of invariants at compile time, thereby
nipping in the bud a large swathe of run-time errors.

Well-Typed Programs Do Go Wrong

Alas, well-typed programs do go quite wrong, in a variety of ways.

Division by Zero This innocuous function computes the average of
a list of integers:

average :: [Int] -> Int

average xs = sum xs `div` length xs

We get the desired result on a non-empty list of numbers:

ghci> average [10, 20, 30, 40]

25

However, if we call it with an empty list, we get a rather unpleas-
ant crash: 1 1 We could write average more defen-

sively, returning a Maybe or Either value.
However, this merely kicks the can
down the road. Ultimately, we will
want to extract the Int from the Maybe
and if the inputs were invalid to start
with, then at that point we’d be stuck.

ghci> average []

*** Exception: divide by zero

Missing Keys

Associative key-value maps are the new lists; they come “built-in”
with modern languages like Go, Python, JavaScript and Lua; and of
course, they’re widely used in Haskell too.
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ghci> :m +Data.Map

ghci> let m = fromList [ ("haskell", "lazy")

, ("ocaml" , "eager")]

ghci> m ! "haskell"

"lazy"

Alas, maps are another source of vexing errors that are tickled
when we try to find the value of an absent key: 2 2 Again, one could use a Maybe but it’s

just deferring the inevitable.

ghci> m ! "javascript"

"*** Exception: key is not in the map

Segmentation Faults

Say what? How can one possibly get a segmentation fault with a
safe language like Haskell. Well, here’s the thing: every safe language
is built on a foundation of machine code, or at the very least, C.
Consider the ubiquitous vector library:

ghci> :m +Data.Vector

ghci> let v = fromList ["haskell", "ocaml"]

ghci> unsafeIndex v 0

"haskell"

However, invalid inputs at the safe upper levels can percolate all
the way down and stir a mutiny down below: 3 3 Why use a function marked unsafe?

Because it’s very fast! Furthermore,
even if we used the safe variant, we’d
get a run-time exception which is only
marginally better. Finally, we should
remember to thank the developers for
carefully marking it unsafe, because
in general, given the many layers of
abstraction, it is hard to know which
functions are indeed safe.

ghci> unsafeIndex v 3

'ghci' terminated by signal SIGSEGV ...

Heart Bleeds

Finally, for certain kinds of programs, there is a fate worse than
death. text is a high-performance string processing library for
Haskell, that is used, for example, to build web services.

ghci> :m +Data.Text Data.Text.Unsafe

ghci> let t = pack "Voltage"

ghci> takeWord16 5 t

"Volta"

A cunning adversary can use invalid, or rather, well-crafted, inputs
that go well outside the size of the given text to read extra bytes and
thus extract secrets without anyone being any the wiser.
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ghci> takeWord16 20 t

"Voltage\1912\3148\SOH\NUL\15928\2486\SOH\NUL"

The above call returns the bytes residing in memory immediately
after the string Voltage. These bytes could be junk, or could be either
the name of your favorite TV show, or, more worryingly, your bank
account password.

Refinement Types

Refinement types allow us to enrich Haskell’s type system with
predicates that precisely describe the sets of valid inputs and outputs
of functions, values held inside containers, and so on. These predi-
cates are drawn from special logics for which there are fast decision
procedures called SMT solvers.

By combining types with predicates you can specify contracts
which describe valid inputs and outputs of functions. The refinement
type system guarantees at compile-time that functions adhere to their
contracts. That is, you can rest assured that the above calamities
cannot occur at run-time.

LiquidHaskell is a Refinement Type Checker for Haskell, and in this
tutorial we’ll describe how you can use it to make programs better
and programming even more fun. 4 4 If you are familiar with the notion of

Dependent Types, for example, as in the
Coq proof assistant, then Refinement
Types can be thought of as restricted
class of the former where the logic is
restricted, at the cost of expressiveness,
but with the reward of a considerable
amount of automation.

Audience

Do you

• know a bit of basic arithmetic and logic?

• know the difference between a nand and an xor?

• know any typed languages e.g. ML, Haskell, Scala, F# or (Typed)
Racket?

• know what forall a. a -> a means?

• like it when your code editor politely points out infinite loops?

• like your programs to not have bugs?

Then this tutorial is for you!
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Getting Started

As of July 2020, LiquidHaskell, version 0.8.10 onwards, is available as
a GHC plugin.

This means, roughly, that you need simply

1. Add LH to your project dependencies, after which

2. GHC produces LH type errors whenever you compile the code, so
that you can

3. View errors using your favorite editor’s existing Haskell tooling.

LiquidHaskell Requires (in addition to the cabal dependencies) a
binary for an SMTLIB2 compatible solver, e.g. one of

• Z3 (which we recommend)

• CVC4

• MathSat

This Tutorial is written in literate Haskell and the code for it is
available here. Hence, we strongly recommend you grab the code, and
follow along, and especially that you do the exercises, via two steps.

Step 1 Clone the code repository,

git clone --recursive https://github.com/ucsd-progsys/liquidhaskell-tutorial.git

Step 2: Try building the code using

cabal v2-build

or

stack build --fast --file-watch

If your environment is set up correctly, compilation will stop with
a Liquid type error:

https://downloads.haskell.org/~ghc/8.10.1/docs/html/users_guide/extending_ghc.html
https://github.com/Z3Prover/z3
https://cvc4.github.io/
http://mathsat.fbk.eu/download.html
http://github.com/ucsd-progsys/liquidhaskell-tutorial.git
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src/Tutorial_01_Introduction.lhs:30:27: error:

Liquid Type Mismatch

.

The inferred type

VV : {v : GHC.Types.Int | v >= 0

&& v == len xs}

.

is not a subtype of the required type

VV : {VV : GHC.Types.Int | VV /= 0}

.

in the context

xs : {v : [GHC.Types.Int] | len v >= 0}

|

30 | average xs = sum xs `div` length xs

| ˆˆˆˆˆˆˆˆˆ

Step 3: Iteratively edit-compile the code in src/ until it builds
without any liquid type errors.

The above workflow will let you use whatever GHC/Haskell
tooling you use for your favorite editor, to automatically display LH
errors as well.

If you’d like to copy and paste code snippets into the web
demo, instead of cloning the repo, note that you may need to pass
--no-termination to liquid, or equivalently, add the pragma {-@

LIQUID "--no-termination" @-} to the top of the source file. (By
default, liquid tries to ensure that all code it examines will terminate.
Some of the code in this tutorial is written in such a way that
termination is not immediately obvious to LH.)

Note: This tutorial is a work in progress, and we will be very grate-
ful for feedback and suggestions, ideally via pull-requests on github.

Lets begin!
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Logic & SMT

As we shall see shortly, a refinement type is:

Refinement Types = Types + Logical Predicates

Let us begin by quickly recalling what we mean by “logical pred-
icates” in the remainder of this tutorial. 1 To this end, we will de- 1 If you are comfortable with this mate-

rial, e.g. if you know what the “S”, “M”
and “T” stand for in SMT, and what
QF-UFLIA stands for (i.e. the quantifier
free theory of linear arithmetic and
uninterpreted functions), then feel free
skip to the next chapter.

scribe syntax, that is, what predicates look like, and semantics, which is
a fancy word for what predicates mean.

Syntax

A logical predicate is, informally speaking, a Boolean valued term
drawn from a restricted subset of Haskell. In particular, the expres-
sions are drawn from the following grammar comprising constants,
expressions and predicates.

A Constant
2 c is simply one of the numeric values: 2 When you see := you should read it as

“is defined to be”

c := 0, 1, 2, ...

A Variable v is one of x, y, z, etc., these will refer to (the values of)
binders in our source programs.

v := x, y, z, ...

An Expression e is one of the following forms; that is, an expres-
sion is built up as linear arithmetic expressions over variables and
constants and uninterpreted function applications.
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e := v -- variable

| c -- constant

| (e + e) -- addition

| (e - e) -- subtraction

| (c * e) -- multiplication by constant

| (v e1 e2 ... en) -- uninterpreted function application

| (if p then e else e) -- if-then-else

Examples of Expressions include the following:

• x + y - z

• 2 * x

• 1 + size x

A Relation is one of the usual (arithmetic) comparison operators:

r := == -- equality

| /= -- disequality

| >= -- greater than or equal

| <= -- less than or equal

| > -- greater than

| < -- less than

A Predicate is either an atomic predicate, obtained by comparing
two expressions, or, an application of a predicate function to a list of
arguments, or the Boolean combination of the above predicates with
the operators && (and), || (or), ==> (implies 3), <=> (if and only if 4), 3 Read p ==> q as “if p then q”

4 Read p <=> q as “if p then q and if q
then p”

and not.

p := (e r e) -- binary relation

| (v e1 e2 ... en) -- predicate (or alias) application

| (p && p) -- and

| (p || p) -- or

| (p => p) | (p ==> p) -- implies

| (p <=> p) -- iff

| (not p) -- negation

| true | True

| false | False

Examples of Predicates include the following:
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• x + y <= 3

• null x

• x < 10 ==> y < 10 ==> x + y < 20

• 0 < x + y <=> 0 < y + x

Semantics

The syntax of predicates tells us what they look like, that is, what we
can write down as valid predicates. Next, let us turn our attention
to what a predicate means. Intuitively, a predicate is just a Boolean
valued Haskell function with &&, ||, not being the usual operators
and ==> and <=> being two special operators.

The Implication operator ==> is equivalent to the following Haskell
function. (For now, ignore the signature: it just says the output is a
Bool that is equal to the logical implication between the inputs p and
q.)

{-@ (==>) :: p:Bool -> q:Bool -> {v:Bool | v <=> (p ==> q)} @-}

False ==> False = True

False ==> True = True

True ==> True = True

True ==> False = False

The If-and-only-if operator <=> is equivalent to the Haskell
function:5 5 An observant reader may notice that

<=> is the same as == if the arguments
are of type Bool{-@ (<=>) :: p:Bool -> q:Bool -> {v:Bool | v <=> (p <=> q)} @-}

False <=> False = True

False <=> True = False

True <=> True = True

True <=> False = False

An Environment is a mapping from variables to their Haskell types.
For example, let G be an environment defined as

x :: Int

y :: Int

z :: Int

which maps each variable x, y and z to the type Int.
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An Assignment under an environment, is a mapping from variables
to values of the type specified in the environment. For example,

x := 1

y := 2

z := 3

is an assignment under G that maps x, y and z to the Int values 1, 2
and 3 respectively.

A Predicate Evaluates to either True or False under a given
assignment. For example, the predicate

x + y > 10

evaluates to False given the above assignment but evaluates to True

under the assignment

x := 10

y := 10

z := 20

A Predicate is Satisfiable in an environment if there exists an
assignment (in that environment) that makes the predicate evaluate
to True. For example, in G the predicate

x + y == z

is satisfiable, as the above assignment makes the predicate evaluate to
True.

A Predicate is Valid in an environment if every assignment in that
environment makes the predicate evaluate to True. For example, the
predicate

x < 10 || x == 10 || x > 10

is valid under G as no matter what value we assign to x, the above
predicate will evaluate to True.
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Verification Conditions

LiquidHaskell works without actually executing your programs.
Instead, it checks that your program meets the given specifications in
roughly two steps.

1. First, LH combines the code and types down to a set of Verification
Conditions (VC) which are predicates that are valid only if your
program satisfies a given property. 6 6 The process is described at length in

this paper

2. Next, LH queries an SMT solver to determine whether these VCs
are valid. If so, it says your program is safe and otherwise it rejects
your program.

The SMT Solver decides whether a predicate (VC) is valid without
enumerating and evaluating all assignments. Indeed, it is impossible
to do so as there are usually infinitely many assignments once the
predicates refer to integers or lists and so on. Instead, the SMT solver
uses a variety of sophisticated symbolic algorithms to deduce whether
a predicate is valid or not. This process is the result of decades
of work in mathematical logic and decision procedures; the Ph.D
thesis of Greg Nelson is an excellent place to learn more about these
beautiful algorithms.

We Restrict the Logic to ensure that all our VC queries fall within
the decidable fragment. This makes LiquidHaskell extremely automatic
– there is no explicit manipulation of proofs, just the specification of
properties via types and of course, the implementation via Haskell
code! This automation comes at a price: all our refinements must
belong to the logic above. Fortunately, with a bit of creativity, we can
say a lot in this logic. 7 7 In particular, we will use the unin-

terpreted functions to create many
sophisticated abstractions.

Examples: Propositions

Finally, let’s conclude this quick overview with some examples of
predicates, in order to build up our own intuition about logic and
validity. Each of the below is a predicate from our refinement logic.
However, we write them as raw Haskell expressions that you may
be more familiar with right now, and so that we can start to use
LiquidHaskell to determine whether a predicate is indeed valid or
not.

http://goto.ucsd.edu/~rjhala/liquid/liquid_types.pdf
http://en.wikipedia.org/wiki/Satisfiability_Modulo_Theories
https://people.eecs.berkeley.edu/~necula/Papers/nelson-thesis.pdf
https://people.eecs.berkeley.edu/~necula/Papers/nelson-thesis.pdf
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Let ‘TRUE‘ be a refined type for Bool valued expressions that
always evaluate to True. Similarly, we can define FALSE for Bool

valued expressions that always evaluate to False:8 8 This syntax will be discussed in
greater detail soon

{-@ type TRUE = {v:Bool | v } @-}

{-@ type FALSE = {v:Bool | not v} @-}

Thus, a valid predicate is one that has the type TRUE. The simplest
example of a valid predicate is just True:

{-@ ex0 :: TRUE @-}

ex0 = True

of course, False is not valid

{-@ ex0' :: TRUE @-}

ex0' = False

We can get more interesting predicates if we use variables. For
example, the following is valid predicate says that a Bool variable is
either True or False.

{-@ ex1 :: Bool -> TRUE @-}

ex1 b = b || not b

Of course, a variable cannot be both True and False, and so the
below predicate is valid:

{-@ ex2 :: Bool -> FALSE @-}

ex2 b = b && not b

The next few examples illustrate the ==> operator. You should
read p ==> q as if p is true then q must also be true. Thus, the below
predicates are valid as if both a and b are true, then well, a is true,
and b is true.

{-@ ex3 :: Bool -> Bool -> TRUE @-}

ex3 a b = (a && b) ==> a

{-@ ex4 :: Bool -> Bool -> TRUE @-}

ex4 a b = (a && b) ==> b

Exercise 2.1 (Implications and Or). Of course, if we replace the && with
|| the result is not valid. Can you shuffle the variables around – without
changing the operators – to make the formula valid?
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{-@ ex3' :: Bool -> Bool -> TRUE @-}

ex3' a b = (a || b) ==> a

The following predicates are valid because they encode modus
ponens: if you know that a implies b and you know that a is true,
then it must be the case that b is also true:

{-@ ex6 :: Bool -> Bool -> TRUE @-}

ex6 a b = (a && (a ==> b)) ==> b

{-@ ex7 :: Bool -> Bool -> TRUE @-}

ex7 a b = a ==> (a ==> b) ==> b

Recall that p <=> q (read p if and only if q) evaluates to True

exactly when p and q evaluate to the same values (True or False). It
is used to encode equalities between predicates. For example, we can
write down De Morgan’s laws as the valid predicates:

{-@ exDeMorgan1 :: Bool -> Bool -> TRUE @-}

exDeMorgan1 a b = not (a || b) <=> (not a && not b)

Exercise 2.2 (DeMorgan’s Law). The following version of DeMorgan’s law
is wrong. Can you fix it to get a valid formula?

{-@ exDeMorgan2 :: Bool -> Bool -> TRUE @-}

exDeMorgan2 a b = not (a && b) <=> (not a && not b)

Examples: Arithmetic

Next, let’s look at some predicates involving arithmetic. The simplest
ones don’t have any variables, for example:

{-@ ax0 :: TRUE @-}

ax0 = 1 + 1 == 2

Again, a predicate that evaluates to False is not valid:

{-@ ax0' :: TRUE @-}

ax0' = 1 + 1 == 3

SMT Solvers determine Validity without enumerating assign-
ments. For example, consider the predicate:

http://en.wikipedia.org/wiki/Modus_ponens
http://en.wikipedia.org/wiki/Modus_ponens
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
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{-@ ax1 :: Int -> TRUE @-}

ax1 x = x < x + 1

It is trivially valid; as via the usual laws of arithmetic, it is equivalent
to 0 < 1 which is True independent of the value of x. The SMT solver
is able to determine this validity without enumerating the infinitely
many possible values for x. This kind of validity checking lies at the
heart of LiquidHaskell.

We can combine arithmetic and propositional

operators, as shown in the following examples:

{-@ ax2 :: Int -> TRUE @-}

ax2 x = (x < 0) ==> (0 <= 0 - x)

{-@ ax3 :: Int -> Int -> TRUE @-}

ax3 x y = (0 <= x) ==> (0 <= y) ==> (0 <= x + y)

{-@ ax4 :: Int -> Int -> TRUE @-}

ax4 x y = (x == y - 1) ==> (x + 2 == y + 1)

{-@ ax5 :: Int -> Int -> Int -> TRUE @-}

ax5 x y z = (x <= 0 && x >= 0)

==> (y == x + z)

==> (y == z)

Exercise 2.3 (Addition and Order). The formula below is not valid. Do
you know why? Change the hypothesis i.e. the thing to the left of the ==>
to make it a valid formula.

{-@ ax6 :: Int -> Int -> TRUE @-}

ax6 x y = True ==> (x <= x + y)

Examples: Uninterpreted Function

We say that function symbols are uninterpreted in the refinement
logic, because the SMT solver does not “know” how functions are
defined. Instead, the only thing that the solver knows is the axiom of
congruence which states that any function f, returns equal outputs
when invoked on equal inputs.

We Test the Axiom of Congruence by checking that the following
predicate is valid:
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{-@ congruence :: (Int -> Int) -> Int -> Int -> TRUE @-}

congruence f x y = (x == y) ==> (f x == f y)

Again, remember we are not evaluating the code above; indeed we
cannot evaluate the code above because we have no definition of f.
Still, the predicate is valid as the congruence axiom holds for any
possible interpretation of f.

Here is a fun example; can you figure out why this predicate is
indeed valid? (The SMT solver can. . . )

{-@ fx1 :: (Int -> Int) -> Int -> TRUE @-}

fx1 f x = (x == f (f (f x)))

==> (x == f (f (f (f (f x)))))

==> (x == f x)

To get a taste of why uninterpreted functions will prove useful,
let’s write a function to compute the size of a list:

{-@ measure size @-}

{-@ size :: [a] -> Nat @-}

size :: [a] -> Int

size [] = 0

size (x:xs) = 1 + size xs

We can now verify that the following predicates are valid:

{-@ fx0 :: [a] -> [a] -> TRUE @-}

fx0 xs ys = (xs == ys) ==> (size xs == size ys)

Note that to determine that the above is valid, the SMT solver does
not need to know the meaning or interpretation of size – merely that it
is a function. When we need some information about the definition,
of size we will put it inside the predicate. For example, in order to
prove that the following is valid:

{-@ fx2 :: a -> [a] -> TRUE @-}

fx2 x xs = 0 < size ys

where

ys = x : xs

LiquidHaskell actually asks the SMT solver to prove the validity of a
VC predicate which states that sizes are non-negative and that since
ys equals x:xs, the size of ys is one more than xs. 9 9 Fear not! We will describe how this

works soon
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{-@ fx2VC :: _ -> _ -> _ -> TRUE @-}

fx2VC x xs ys = (0 <= size xs)

==> (size ys == 1 + size xs)

==> (0 < size ys)

Recap

This chapter describes exactly what we, for the purposes of this book,
mean by the term logical predicate.

1. We defined a grammar – a restricted subset of Haskell correspond-
ing to Bool valued expressions.

2. The restricted grammar lets us use SMT solvers to decide whether
a predicate is valid that is, evaluates to True for all values of the
variables.

3. Crucially, the SMT solver determines validity without enumerating
and evaluating the predicates (which would take forever!) but
instead by using clever symbolic algorithms.

Next, let’s see how we can use logical predicates to specify and
verify properties of real programs.
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Refinement Types

What is a Refinement Type? In a nutshell,

Refinement Types = Types + Predicates

That is, refinement types allow us to decorate types with logical pred-
icates, which you can think of as boolean-valued Haskell expressions,
that constrain the set of values described by the type. This lets us
specify sophisticated invariants of the underlying values.

Defining Types

Let us define some refinement types:1 1 You can read the type of Zero as: “v is
an Int such that v equals 0” and NonZero
as : “v is an Int such that v does not
equal 0”

{-@ type Zero = {v:Int | v == 0} @-}

{-@ type NonZero = {v:Int | v /= 0} @-}

The Value Variable v denotes the set of valid inhabitants of each
refinement type. Hence, Zero describes the set of Int values that are
equal to 0, that is, the singleton set containing just 0, and NonZero

describes the set of Int values that are not equal to 0, that is, the set
{1, -1, 2, -2, ...} and so on. 2 2 We will use @-marked comments to

write refinement type annotations in
the Haskell source file, making these
types, quite literally, machine-checked
comments!

To use these types we can write:

{-@ zero :: Zero @-}

zero = 0 :: Int

{-@ one, two, three :: NonZero @-}
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one = 1 :: Int

two = 2 :: Int

three = 3 :: Int

Errors

If we try to say nonsensical things like:

nonsense :: Int

nonsense = one'

where

{-@ one' :: Zero @-}

one' = 1

LiquidHaskell will complain with an error message:

../liquidhaskell-tutorial/src/03-basic.lhs:72:3-6: Error: Liquid Type Mismatch

72 | one' = 1 :: Int

ˆˆˆˆ

Inferred type

VV : {VV : Int | VV == (1 : int)}

not a subtype of Required type

VV : {VV : Int | VV == 0}

The message says that the expression 1 :: Int has the type

{v:Int | v == 1}

which is not (a subtype of) the required type

{v:Int | v == 0}

as 1 is not equal to 0.

Subtyping

What is this business of subtyping? Suppose we have some more
refinements of Int
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{-@ type Nat = {v:Int | 0 <= v} @-}

{-@ type Even = {v:Int | v mod 2 == 0 } @-}

{-@ type Lt100 = {v:Int | v < 100} @-}

What is the type of zero? Zero of course, but also Nat:

{-@ zero' :: Nat @-}

zero' = zero

and also Even:

{-@ zero'' :: Even @-}

zero'' = zero

and also any other satisfactory refinement, such as 3 3 We use a different names zero',
zero'' etc. as (currently) LiquidHaskell
supports at most one refinement type
for each top-level name.{-@ zero''' :: Lt100 @-}

zero''' = zero

Subtyping and Implication

Zero is the most precise type for 0::Int, as it is a subtype of Nat,
Even and Lt100. This is because the set of values defined by Zero is a
subset of the values defined by Nat, Even and Lt100, as the following
logical implications are valid:

• v = 0 ⇒ 0 ≤ v

• v = 0 ⇒ v mod 2 = 0

• v = 0 ⇒ v < 100

In Summary the key points about refinement types are:

1. A refinement type is just a type decorated with logical predicates.

2. A term can have different refinements for different properties.

3. When we erase the predicates we get the standard Haskell types.4 4 Dually, a standard Haskell type has
the trivial refinement true. For example,
Int is equivalent to {v:Int|true}.

Writing Specifications

Let’s write some more interesting specifications.
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Typing Dead Code We can wrap the usual error function in a
function die with the type:

{-@ die :: {v:String | false} -> a @-}

die msg = error msg

The interesting thing about die is that the input type has the
refinement false, meaning the function must only be called with
Strings that satisfy the predicate false. This seems bizarre; isn’t it
impossible to satisfy false? Indeed! Thus, a program containing die

typechecks only when LiquidHaskell can prove that die is never called.
For example, LiquidHaskell will accept

cannotDie = if 1 + 1 == 3

then die "horrible death"

else ()

by inferring that the branch condition is always False and so die

cannot be called. However, LiquidHaskell will reject

canDie = if 1 + 1 == 2

then die "horrible death"

else ()

as the branch may (will!) be True and so die can be called.

Refining Function Types: Pre-conditions

Let’s use die to write a safe division function that only accepts non-zero
denominators.

divide' :: Int -> Int -> Int

divide' n 0 = die "divide by zero"

divide' n d = n `div` d

From the above, it is clear to us that div is only called with non-
zero divisors. However, LiquidHaskell reports an error at the call to
"die" because, what if divide' is actually invoked with a 0 divisor?

We can specify that will not happen, with a pre-condition that says
that the second argument is non-zero:
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{-@ divide :: Int -> NonZero -> Int @-}

divide _ 0 = die "divide by zero"

divide n d = n `div` d

To Verify that divide never calls die, LiquidHaskell infers that
"divide by zero" is not merely of type String, but in fact has the the
refined type {v:String | false} in the context in which the call to die

occurs. LiquidHaskell arrives at this conclusion by using the fact that
in the first equation for divide the denominator is in fact

0 :: {v: Int | v == 0}

which contradicts the pre-condition (i.e. input) type. Thus, by contra-
diction, LiquidHaskell deduces that the first equation is dead code and
hence die will not be called at run-time.

Establishing Pre-conditions

The above signature forces us to ensure that that when we use
divide, we only supply provably NonZero arguments. Hence, these
two uses of divide are fine:

avg2 x y = divide (x + y) 2

avg3 x y z = divide (x + y + z) 3

Exercise 3.1 (List Average). Consider the function avg:

1. Why does LiquidHaskell flag an error at n ?

2. How can you change the code so LiquidHaskell verifies it?

avg :: [Int] -> Int

avg xs = divide total n

where

total = sum xs

n = length xs

Refining Function Types: Post-conditions

Next, let’s see how we can use refinements to describe the outputs of
a function. Consider the following simple absolute value function
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abs :: Int -> Int

abs n

| 0 < n = n

| otherwise = 0 - n

We can use a refinement on the output type to specify that the
function returns non-negative values

{-@ abs :: Int -> Nat @-}

LiquidHaskell verifies that abs indeed enjoys the above type by
deducing that n is trivially non-negative when 0 < n and that in the
otherwise case, the value 0 - n is indeed non-negative. 5 5 LiquidHaskell is able to automatically

make these arithmetic deductions by
using an SMT solver which has built-in
decision procedures for arithmetic, to
reason about the logical refinements.Testing Values: Booleans and Propositions

In the above example, we compute a value that is guaranteed to be a
Nat. Sometimes, we need to test if a value satisfies some property, e.g.,
is NonZero. For example, let’s write a command-line calculator:

calc = do putStrLn "Enter numerator"

n <- readLn

putStrLn "Enter denominator"

d <- readLn

putStrLn (result n d)

calc

which takes two numbers and divides them. The function result

checks if d is strictly positive (and hence, non-zero), and does the
division, or otherwise complains to the user:

result n d

| isPositive d = "Result = " ++ show (n `divide` d)

| otherwise = "Humph, please enter positive denominator!"

Finally, isPositive is a test that returns a True if its input is
strictly greater than 0 or False otherwise:

isPositive :: Int -> Bool

isPositive x = x > 0

http://en.wikipedia.org/wiki/Satisfiability_Modulo_Theories
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To verify the call to divide inside result we need to tell Liquid-
Haskell that the division only happens with a NonZero value d. How-
ever, the non-zero-ness is established via the test that occurs inside
the guard isPositive d. Hence, we require a post-condition that states
that isPositive only returns True when the argument is positive:

{-@ isPositive :: x:Int -> {v:Bool | v <=> x > 0} @-}

In the above signature, the output type (post-condition) states that
isPositive x returns True if and only if x was in fact strictly greater
than 0. In other words, we can write post-conditions for plain-old
Bool-valued tests to establish that user-supplied values satisfy some
desirable property (here, Pos and hence NonZero) in order to then
safely perform some computation on it.

Exercise 3.2 (Propositions). What happens if you delete the type for
isPositive ? Can you change the type for isPositive (i.e. write some
other type) while preserving safety?

Exercise 3.3 (Assertions). Consider the following assert function, and
two use sites. Write a suitable refinement type signature for lAssert so that
lAssert and yes are accepted but no is rejected.

{-@ lAssert :: Bool -> a -> a @-}

lAssert True x = x

lAssert False _ = die "yikes, assertion fails!"

yes = lAssert (1 + 1 == 2) ()

no = lAssert (1 + 1 == 3) ()

Hint: You need a pre-condition that lAssert is only called with True.

Putting It All Together

Let’s wrap up this introduction with a simple truncate function that
connects all the dots.

truncate :: Int -> Int -> Int

truncate i max

| i' <= max' = i

| otherwise = max' * (i `divide` i')

where

i' = abs i

max' = abs max

https://www.haskell.org/hoogle/?hoogle=assert
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The expression truncate i n evaluates to i when the absolute value
of i is less than the upper bound max, and otherwise truncates the
value at the maximum n. LiquidHaskell verifies that the use of
divide is safe by inferring that:

1. max' < i' from the branch condition,

2. 0 <= i' from the abs post-condition, and

3. 0 <= max' from the abs post-condition.

From the above, LiquidHaskell infers that i' /= 0. That is, at
the call site i' :: NonZero, thereby satisfying the pre-condition for
divide and verifying that the program has no pesky divide-by-zero
errors.

Recap

This concludes our quick introduction to Refinement Types and
LiquidHaskell. Hopefully you have some sense of how to

1. Specify fine-grained properties of values by decorating their types
with logical predicates.

2. Encode assertions, pre-conditions, and post-conditions with
suitable function types.

3. Verify semantic properties of code by using automatic logic
engines (SMT solvers) to track and establish the key relationships
between program values.
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Polymorphism

Refinement types shine when we want to establish properties of
polymorphic datatypes and higher-order functions. Rather than be
abstract, let’s illustrate this with a classic use-case.

Array Bounds Verification aims to ensure that the indices used
to retrieve values from an array are indeed valid for the array, i.e. are
between 0 and the size of the array. For example, suppose we create
an array with two elements:

twoLangs = fromList ["haskell", "javascript"]

Lets attempt to look it up at various indices:

eeks = [ok, yup, nono]

where

ok = twoLangs ! 0

yup = twoLangs ! 1

nono = twoLangs ! 3

If we try to run the above, we get a nasty shock: an exception that
says we’re trying to look up twoLangs at index 3 whereas the size of
twoLangs is just 2.

Prelude> :l 03-poly.lhs

[1 of 1] Compiling VectorBounds ( 03-poly.lhs, interpreted )

Ok, modules loaded: VectorBounds.

*VectorBounds> eeks

Loading package ... done.

"*** Exception: ./Data/Vector/Generic.hs:249 ((!)): index out of bounds (3,2)

https://www.cs.cmu.edu/~fp/papers/pldi98dml.pdf
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In a suitable Editor e.g. Vim or Emacs, or if you push the “play”
button in the online demo, you will literally see the error without
running the code. Lets see how LiquidHaskell checks ok and yup but
flags nono, and along the way, learn how it reasons about recursion,
higher-order functions, data types and polymorphism.

Specification: Vector Bounds

First, let’s see how to specify array bounds safety by refining the types
for the key functions exported by Data.Vector, i.e. how to

1. define the size of a Vector

2. compute the size of a Vector

3. restrict the indices to those that are valid for a given size.

Imports

We can write specifications for imported modules – for which we
lack the code – either directly in the client’s source file or better, in
.spec files which can be reused across multiple client modules.

Include directories can be specified when checking a file. Suppose
we want to check some file target.hs that imports an external de-
pendency Data.Vector. We can write specifications for Data.Vector

inside include/Data/Vector.spec which contains:

-- | Define the size

measure vlen :: Vector a -> Int

-- | Compute the size

assume length :: x:Vector a -> {v:Int | v = vlen x}

-- | Lookup at an index

assume (!) :: x:Vector a -> {v:Nat | v < vlen x} -> a

Using this new specification is now a simple matter of telling
LiquidHaskell to include this file:

$ liquid -i include/ target.hs

LiquidHaskell ships with specifications for Prelude, Data.List,
and Data.Vector which it includes by default.

https://github.com/ucsd-progsys/liquidhaskell/blob/91e1074575ca102df810ea399c5a13063e8c8011/include/Data/Vector.spec
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Measures are used to define properties of Haskell data values that are
useful for specification and verification. Think of vlen as the actual
size of a Vector regardless of how the size was computed.

Assumes are used to specify types describing the semantics of
functions that we cannot verify e.g. because we don’t have the
code for them. Here, we are assuming that the library function
Data.Vector.length indeed computes the size of the input vector.
Furthermore, we are stipulating that the lookup function (!) requires
an index that is between 0 and the real size of the input vector x.

Dependent Refinements are used to describe relationships between
the elements of a specification. For example, notice how the signature
for length names the input with the binder x that then appears in the
output type to constrain the output Int. Similarly, the signature for
(!) names the input vector x so that the index can be constrained to
be valid for x. Thus, dependency lets us write properties that connect
multiple program values.

Aliases are extremely useful for defining abbreviations for commonly
occurring types. Just as we enjoy abstractions when programming,
we will find it handy to have abstractions in the specification mecha-
nism. To this end, LiquidHaskell supports type aliases. For example,
we can define Vectors of a given size N as:

{-@ type VectorN a N = {v:Vector a | vlen v == N} @-}

and now use this to type twoLangs above as:

{-@ twoLangs :: VectorN String 2 @-}

twoLangs = fromList ["haskell", "javascript"]

Similarly, we can define an alias for Int values between Lo and Hi:

{-@ type Btwn Lo Hi = {v:Int | Lo <= v && v < Hi} @-}

after which we can specify (!) as:

(!) :: x:Vector a -> Btwn 0 (vlen x) -> a
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Verification: Vector Lookup

Let’s try to write some functions to sanity check the specifications.
First, find the starting element – or head of a Vector

head :: Vector a -> a

head vec = vec ! 0

When we check the above, we get an error:

src/03-poly.lhs:127:23: Error: Liquid Type Mismatch

Inferred type

VV : Int | VV == ?a && VV == 0

not a subtype of Required type

VV : Int | VV >= 0 && VV < vlen vec

In Context

VV : Int | VV == ?a && VV == 0

vec : Vector a | 0 <= vlen vec

?a : Int | ?a == (0 : int)

LiquidHaskell is saying that 0 is not a valid index as it is not between
0 and vlen vec. Say what? Well, what if vec had no elements! A
formal verifier doesn’t make off by one errors.

To Fix the problem we can do one of two things.

1. Require that the input vec be non-empty, or

2. Return an output if vec is non-empty, or

Here’s an implementation of the first approach, where we define
and use an alias NEVector for non-empty Vectors

{-@ type NEVector a = {v:Vector a | 0 < vlen v} @-}

{-@ head' :: NEVector a -> a @-}

head' vec = vec ! 0

Exercise 4.1 (Vector Head). Replace the undefined with an implementa-
tion of head'' which accepts all Vectors but returns a value only when the
input vec is not empty.
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head'' :: Vector a -> Maybe a

head'' vec = undefined

Exercise 4.2 (Unsafe Lookup). The function unsafeLookup is a wrapper
around the (!) with the arguments flipped. Modify the specification for
unsafeLookup so that the implementation is accepted by LiquidHaskell.

{-@ unsafeLookup :: Int -> Vector a -> a @-}

unsafeLookup index vec = vec ! index

Exercise 4.3 (Safe Lookup). Complete the implementation of safeLookup

by filling in the implementation of ok so that it performs a bounds check
before the access.

{-@ safeLookup :: Vector a -> Int -> Maybe a @-}

safeLookup x i

| ok = Just (x ! i)

| otherwise = Nothing

where

ok = undefined

Inference: Our First Recursive Function

Ok, let’s write some code! Let’s start with a recursive function that
adds up the values of the elements of an Int vector.

-- >>> vectorSum (fromList [1, -2, 3])

-- 2

vectorSum :: Vector Int -> Int

vectorSum vec = go 0 0

where

go acc i

| i < sz = go (acc + (vec ! i)) (i + 1)

| otherwise = acc

sz = length vec

Exercise 4.4 (Guards). What happens if you replace the guard with i <=

sz?

Exercise 4.5 (Absolute Sum). Write a variant of the above function that
computes the absoluteSum of the elements of the vector.
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-- >>> absoluteSum (fromList [1, -2, 3])

-- 6

{-@ absoluteSum :: Vector Int -> Nat @-}

absoluteSum = undefined

Inference

LiquidHaskell verifies vectorSum – or, to be precise, the safety
of the vector accesses vec ! i. The verification works out because
LiquidHaskell is able to automatically infer 1 1 In your editor, click on go to see the

inferred type.

go :: Int -> {v:Int | 0 <= v && v <= sz} -> Int

which states that the second parameter i is between 0 and the length
of vec (inclusive). LiquidHaskell uses this and the test that i < sz to
establish that i is between 0 and (vlen vec) to prove safety.

Note you need to run liquid with the option --no-termination

or make sure your source file has {-@ LIQUID "--no-termination"

@-}, otherwise the code forgo‘ fails the now default termination
check. We will come back to this example later to see how to verify
termination using metrics.

Exercise 4.6 (Off by one?). Why does the type of go have v <= sz and not
v < sz ?

Higher-Order Functions: Bottling Recursion in a loop

Let’s refactor the above low-level recursive function into a generic
higher-order loop.

loop :: Int -> Int -> a -> (Int -> a -> a) -> a

loop lo hi base f = go base lo

where

go acc i

| i < hi = go (f i acc) (i + 1)

| otherwise = acc

We can now use loop to implement vectorSum:

vectorSum' :: Vector Int -> Int

vectorSum' vec = loop 0 n 0 body

where

body i acc = acc + (vec ! i)

n = length vec
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Inference is a convenient option. LiquidHaskell finds:

loop :: lo:Nat -> hi:{Nat|lo <= hi} -> a -> (Btwn lo hi -> a -> a) -> a

In English, the above type states that

• lo the loop lower bound is a non-negative integer

• hi the loop upper bound is a greater then or equal to lo,

• f the loop body is only called with integers between lo and hi.

It can be tedious to have to keep typing things like the above. If we
wanted to make loop a public or exported function, we could use the
inferred type to generate an explicit signature.

At the call loop 0 n 0 body the parameters lo and hi are instan-
tiated with 0 and n respectively, which, by the way is where the
inference engine deduces non-negativity. Thus LiquidHaskell con-
cludes that body is only called with values of i that are between 0 and
(vlen vec), which verifies the safety of the call vec ! i.

Exercise 4.7 (Using Higher-Order Loops). Complete the implementa-
tion of absoluteSum' below. When you are done, what is the type that is
inferred for body?

-- >>> absoluteSum' (fromList [1, -2, 3])

-- 6

{-@ absoluteSum' :: Vector Int -> Nat @-}

absoluteSum' vec = loop 0 n 0 body

where

body i acc = undefined

n = length vec

Exercise 4.8 (Dot Product). The following uses loop to compute
dotProducts. Why does LiquidHaskell flag an error? Fix the code or
specification so that LiquidHaskell accepts it.

-- >>> dotProduct (fromList [1,2,3]) (fromList [4,5,6])

-- 32

{-@ dotProduct :: x:Vector Int -> y:Vector Int -> Int @-}

dotProduct x y = loop 0 sz 0 body

where

body i acc = acc + (x ! i) * (y ! i)

sz = length x
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Refinements and Polymorphism

While the standard Vector is great for dense arrays, often we have to
manipulate sparse vectors where most elements are just 0. We might
represent such vectors as a list of index-value tuples:

{-@ type SparseN a N = [(Btwn 0 N, a)] @-}

Implicitly, all indices other than those in the list have the value 0 (or
the equivalent value for the type a).

The Alias SparseN is just a shorthand for the (longer) type on the
right, it does not define a new type. If you are familiar with the index-
style length encoding e.g. as found in DML or Agda, then note that
despite appearances, our Sparse definition is not indexed.

Sparse Products

Let’s write a function to compute a sparse product

{-@ sparseProduct :: x:Vector _ -> SparseN _ (vlen x) -> _ @-}

sparseProduct x y = go 0 y

where

go n [] = n

go n ((i,v):y') = go (n + (x!i) * v) y'

LiquidHaskell verifies the above by using the specification to
conclude that for each tuple (i, v) in the list y, the value of i is
within the bounds of the vector x, thereby proving x ! i safe.

Folds

The sharp reader will have undoubtedly noticed that the sparse
product can be more cleanly expressed as a fold:

foldl' :: (a -> b -> a) -> a -> [b] -> a

We can simply fold over the sparse vector, accumulating the sum as
we go along

{-@ sparseProduct' :: x:Vector _ -> SparseN _ (vlen x) -> _ @-}

sparseProduct' x y = foldl' body 0 y

where

body sum (i, v) = sum + (x ! i) * v

https://en.wikipedia.org/wiki/Dependent_ML
http://code.haskell.org/Agda/examples/Vec.agda
https://hackage.haskell.org/package/base-4.18.0.0/docs/Data-List.html#v:foldl
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LiquidHaskell digests this without difficulty. The main trick is in how
the polymorphism of foldl' is instantiated.

1. GHC infers that at this site, the type variable b from the signature
of foldl' is instantiated to the Haskell type (Int, a).

2. Correspondingly, LiquidHaskell infers that in fact b can be instan-
tiated to the refined (Btwn 0 (vlen x), a).

Thus, the inference mechanism saves us a fair bit of typing and
allows us to reuse existing polymorphic functions over containers
and such without ceremony.

Recap

This chapter gave you an idea of how one can use refinements to
verify size related properties, and more generally, to specify and
verify properties of recursive and polymorphic functions. Next, let’s
see how we can use LiquidHaskell to prevent the creation of illegal
values by refining data type definitions.
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Refined Datatypes

So far, we have seen how to refine the types of functions, to specify,
for example, pre-conditions on the inputs, or post-conditions on the
outputs. Very often, we wish to define datatypes that satisfy certain
invariants. In these cases, it is handy to be able to directly refine the
data definition, making it impossible to create illegal inhabitants.

Sparse Vectors Revisited

As our first example of a refined datatype, let’s revisit the sparse
vector representation that we saw earlier. The SparseN type alias
we used got the job done, but is not pleasant to work with because
we have no way of determining the dimension of the sparse vector.
Instead, let’s create a new datatype to represent such vectors:

data Sparse a = SP { spDim :: Int

, spElems :: [(Int, a)] }

Thus, a sparse vector is a pair of a dimension and a list of index-
value tuples. Implicitly, all indices other than those in the list have the
value 0 or the equivalent value type a.

Legal

Sparse vectors satisfy two crucial properties. First, the dimension
stored in spDim is non-negative. Second, every index in spElems must
be valid, i.e. between 0 and the dimension. Unfortunately, Haskell’s
type system does not make it easy to ensure that illegal vectors are not
representable.1 1 The standard approach is to use

abstract types and smart constructors
but even then there is only the informal
guarantee that the smart constructor
establishes the right invariants.

https://www.haskell.org/haskellwiki/Smart_constructors
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Data Invariants LiquidHaskell lets us enforce these invariants with
a refined data definition:

{-@ data Sparse a = SP { spDim :: Nat

, spElems :: [(Btwn 0 spDim, a)]} @-}

Where, as before, we use the aliases:

{-@ type Nat = {v:Int | 0 <= v} @-}

{-@ type Btwn Lo Hi = {v:Int | Lo <= v && v < Hi} @-}

Refined Data Constructors The refined data definition is
internally converted into refined types for the data constructor SP:

-- Generated Internal representation

data Sparse a where

SP :: spDim:Nat

-> spElems:[(Btwn 0 spDim, a)]

-> Sparse a

In other words, by using refined input types for SP we have auto-
matically converted it into a smart constructor that ensures that every
instance of a Sparse is legal. Consequently, LiquidHaskell verifies:

okSP :: Sparse String

okSP = SP 5 [ (0, "cat")

, (3, "dog") ]

but rejects, due to the invalid index:

badSP :: Sparse String

badSP = SP 5 [ (0, "cat")

, (6, "dog") ]

Field Measures It is convenient to write an alias for sparse vectors
of a given size N. We can use the field name spDim as a measure, like
vlen. That is, we can use spDim inside refinements2 2 Note that inside a refined data defi-

nition, a field name like spDim refers
to the value of the field, but outside it
refers to the field selector measure or
function.

{-@ type SparseN a N = {v:Sparse a | spDim v == N} @-}

Sparse Products

Let’s write a function to compute a sparse product
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{-@ dotProd :: x:Vector Int -> SparseN Int (vlen x) -> Int @-}

dotProd x (SP _ y) = go 0 y

where

go sum ((i, v) : y') = go (sum + (x ! i) * v) y'

go sum [] = sum

LiquidHaskell verifies the above by using the specification to con-
clude that for each tuple (i, v) in the list y, the value of i is within
the bounds of the vector x, thereby proving x ! i safe.

Folded Product We can port the fold-based product to our new
representation:

{-@ dotProd' :: x:Vector Int -> SparseN Int (vlen x) -> Int @-}

dotProd' x (SP _ y) = foldl' body 0 y

where

body sum (i, v) = sum + (x ! i) * v

As before, LiquidHaskell checks the above by automatically instan-
tiating refinements for the type parameters of foldl', saving us a
fair bit of typing and enabling the use of the elegant polymorphic,
higher-order combinators we know and love.

Exercise 5.1 (Sanitization). ⋆ Invariants are all well and good for data
computed inside our programs. The only way to ensure the legality of data
coming from outside, i.e. from the “real world”, is to write a sanitizer that
will check the appropriate invariants before constructing a Sparse vector.
Write the specification and implementation of a sanitizer fromList, so that
the following typechecks:

Hint: You need to check that all the indices in elts are less than dim;
the easiest way is to compute a new Maybe [(Int, a)] which is Just

the original pairs if they are valid, and Nothing otherwise.

fromList :: Int -> [(Int, a)] -> Maybe (Sparse a)

fromList dim elts = undefined

{-@ test1 :: SparseN String 3 @-}

test1 = fromJust $ fromList 3 [(0, "cat"), (2, "mouse")]

Exercise 5.2 (Addition). Write the specification and implementation of a
function plus that performs the addition of two Sparse vectors of the same
dimension, yielding an output of that dimension. When you are done, the
following code should typecheck:
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plus :: (Num a) => Sparse a -> Sparse a -> Sparse a

plus x y = undefined

{-@ test2 :: SparseN Int 3 @-}

test2 = plus vec1 vec2

where

vec1 = SP 3 [(0, 12), (2, 9)]

vec2 = SP 3 [(0, 8), (1, 100)]

Ordered Lists

As a second example of refined data types, let’s consider a different
problem: representing ordered sequences. Here’s a type for sequences
that mimics the classical list:

data IncList a =

Emp

| (:<) { hd :: a, tl :: IncList a }

infixr 9 :<

The Haskell type above does not state that the elements are in order
of course, but we can specify that requirement by refining every
element in tl to be greater than hd:

{-@ data IncList a =

Emp

| (:<) { hd :: a, tl :: IncList {v:a | hd <= v}} @-}

Refined Data Constructors Once again, the refined data defini-
tion is internally converted into a “smart” refined data constructor

-- Generated Internal representation

data IncList a where

Emp :: IncList a

(:<) :: hd:a -> tl:IncList {v:a | hd <= v} -> IncList a

which ensures that we can only create legal ordered lists.

okList = 1 :< 2 :< 3 :< Emp -- accepted by LH

badList = 2 :< 1 :< 3 :< Emp -- rejected by LH
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It’s all very well to specify ordered lists. Next, let’s see how it’s
equally easy to establish these invariants by implementing several
textbook sorting routines.

Insertion Sort

First, let’s implement insertion sort, which converts an ordinary
list [a] into an ordered list IncList a.

insertSort :: (Ord a) => [a] -> IncList a

insertSort [] = Emp

insertSort (x:xs) = insert x (insertSort xs)

The hard work is done by insert which places an element into the
correct position of a sorted list. LiquidHaskell infers that if you give
insert an element and a sorted list, it returns a sorted list.

insert :: (Ord a) => a -> IncList a -> IncList a

insert y Emp = y :< Emp

insert y (x :< xs)

| y <= x = y :< x :< xs

| otherwise = x :< insert y xs

Exercise 5.3 (Insertion Sort). Complete the implementation of the function
below to use foldr to eliminate the explicit recursion in insertSort.

insertSort' :: (Ord a) => [a] -> IncList a

insertSort' xs = foldr f b xs

where

f = undefined -- Fill this in

b = undefined -- Fill this in

Merge Sort Similarly, it is easy to write merge sort, by implementing
the three steps. First, we write a function that splits the input into two
equal sized halves:

split :: [a] -> ([a], [a])

split (x:y:zs) = (x:xs, y:ys)

where

(xs, ys) = split zs

split xs = (xs, [])

Second, we need a function that combines two ordered lists
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merge :: (Ord a) => IncList a -> IncList a -> IncList a

merge xs Emp = xs

merge Emp ys = ys

merge (x :< xs) (y :< ys)

| x <= y = x :< merge xs (y :< ys)

| otherwise = y :< merge (x :< xs) ys

merge _ _ = Emp

Finally, we compose the above steps to divide (i.e. split) and con-
quer (sort and merge) the input list:

mergeSort :: (Ord a) => [a] -> IncList a

mergeSort [] = Emp

mergeSort [x] = x :< Emp

mergeSort xs = merge (mergeSort ys) (mergeSort zs)

where

(ys, zs) = split xs

Exercise 5.4 (QuickSort). ⋆⋆ Why is the following implementation of
quickSort rejected by LiquidHaskell? Modify it so it is accepted.

Hint: Think about how append should behave so that the quickSort

has the desired property. That is, suppose that ys and zs are already
in increasing order. Does that mean that append x ys zs are also in
increasing order? No! What other requirement do you need? bottle
that intuition into a suitable specification for append and then ensure
that the code satisfies that specification.

quickSort :: (Ord a) => [a] -> IncList a

quickSort [] = Emp

quickSort (x:xs) = append x lessers greaters

where

lessers = quickSort [y | y <- xs, y < x ]

greaters = quickSort [z | z <- xs, z >= x]

{-@ append :: x:a -> IncList a

-> IncList a

-> IncList a

@-}

append z Emp ys = z :< ys

append z (x :< xs) ys = x :< append z xs ys
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Ordered Trees

As a last example of refined data types, let us consider binary search
ordered trees, defined thus:

data BST a = Leaf

| Node { root :: a

, left :: BST a

, right :: BST a }

Binary Search Trees

enjoy the property that each root lies (strictly) between the ele-
ments belonging in the left and right subtrees hanging off the root.
The ordering invariant makes it easy to check whether a certain value
occurs in the tree. If the tree is empty i.e. a Leaf, then the value does
not occur in the tree. If the given value is at the root then the value
does occur in the tree. If it is less than (respectively greater than)
the root, we recursively check whether the value occurs in the left
(respectively right) subtree.

Figure 5.1: A Binary Search Tree with
values between 1 and 9. Each root’s
value lies between the values appearing
in its left and right subtrees.

Figure 5.1 shows a binary search tree whose nodes are labeled
with a subset of values from 1 to 9. We might represent such a tree
with the Haskell value:

okBST :: BST Int

okBST = Node 6

(Node 2

(Node 1 Leaf Leaf)

(Node 4 Leaf Leaf))

(Node 9

(Node 7 Leaf Leaf)

Leaf)

Refined Data Type The Haskell type says nothing about the
ordering invariant, and hence, cannot prevent us from creating illegal
BST values that violate the invariant. We can remedy this with a
refined data definition that captures the invariant. The aliases BSTL

and BSTR denote BSTs with values less than and greater than some X,
respectively.3 3 We could also just inline the definitions

of BSTL and BSTR into that of BST but
they will be handy later.

{-@ data BST a = Leaf

| Node { root :: a

, left :: BSTL a root

http://en.wikipedia.org/wiki/Binary_search_tree
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, right :: BSTR a root } @-}

{-@ type BSTL a X = BST {v:a | v < X} @-}

{-@ type BSTR a X = BST {v:a | X < v} @-}

Refined Data Constructors As before, the above data definition
creates a refined smart constructor for BST

data BST a where

Leaf :: BST a

Node :: r:a -> BST {v:a| v < r}

-> BST {v:a | r < v}

-> BST a

which prevents us from creating illegal trees

badBST = Node 66

(Node 4

(Node 1 Leaf Leaf)

(Node 69 Leaf Leaf)) -- Out of order, rejected

(Node 99

(Node 77 Leaf Leaf)

Leaf)

Exercise 5.5 (Duplicates). Can a BST Int contain duplicates?

Membership

Lets write some functions to create and manipulate these trees.
First, a function to check whether a value is in a BST:

mem :: (Ord a) => a -> BST a -> Bool

mem _ Leaf = False

mem k (Node k' l r)

| k == k' = True

| k < k' = mem k l

| otherwise = mem k r

Singleton Next, another easy warm-up: a function to create a BST

with a single given element:
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one :: a -> BST a

one x = Node x Leaf Leaf

Insertion Lets write a function that adds an element to a BST.4 4 While writing this exercise I inadver-
tently swapped the k and k' which
caused LiquidHaskell to protest.

add :: (Ord a) => a -> BST a -> BST a

add k' Leaf = one k'

add k' t@(Node k l r)

| k' < k = Node k (add k' l) r

| k < k' = Node k l (add k' r)

| otherwise = t

Minimum For our next trick, let’s write a function to delete the
minimum element from a BST. This function will return a pair of
outputs – the smallest element and the remainder of the tree. We can
say that the output element is indeed the smallest, by saying that the
remainder’s elements exceed the element. To this end, let’s define a
helper type: 5 5 This helper type approach is rather

verbose. We should be able to just
use plain old pairs and specify the
above requirement as a dependency
between the pairs’ elements. Later, we
will see how to do so using abstract
refinements.

data MinPair a = MP { mElt :: a, rest :: BST a }

We can specify that mElt is indeed smaller than all the elements in
rest via the data type refinement:

{-@ data MinPair a = MP { mElt :: a, rest :: BSTR a mElt} @-}

Finally, we can write the code to compute MinPair

delMin :: (Ord a) => BST a -> MinPair a

delMin (Node k Leaf r) = MP k r

delMin (Node k l r) = MP k' (Node k l' r)

where

MP k' l' = delMin l

delMin Leaf = die "Don't say I didn't warn ya!"

Exercise 5.6 (Delete). Use delMin to complete the implementation of del

which deletes a given element from a BST, if it is present.

del :: (Ord a) => a -> BST a -> BST a

del k' t@(Node k l r) = undefined

del _ Leaf = Leaf

http://goto.ucsd.edu/~rjhala/liquid/abstract_refinement_types.pdf
http://goto.ucsd.edu/~rjhala/liquid/abstract_refinement_types.pdf
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Exercise 5.7 (Safely Deleting Minimum). ⋆ The function delMin is only
sensible for non-empty trees. Read ahead to learn how to specify and verify
that it is only called with such trees, and then apply that technique here to
verify the call to die in delMin.

Exercise 5.8 (BST Sort). Complete the implementation of toIncList to
obtain a BST based sorting routine bstSort.

bstSort :: (Ord a) => [a] -> IncList a

bstSort = toIncList . toBST

toBST :: (Ord a) => [a] -> BST a

toBST = foldr add Leaf

toIncList :: BST a -> IncList a

toIncList (Node x l r) = undefined

toIncList Leaf = undefined

Hint: This exercise will be a lot easier after you finish the quickSort

exercise. Note that the signature for toIncList does not use Ord and
so you cannot (and need not) use a sorting procedure to implement it.

Recap

In this chapter we saw how LiquidHaskell lets you refine data type
definitions to capture sophisticated invariants. These definitions are
internally represented by refining the types of the data constructors,
automatically making them “smart” in that they preclude the cre-
ation of illegal values that violate the invariants. We will see much
more of this handy technique in future chapters.

One recurring theme in this chapter was that we had to create
new versions of standard datatypes, just in order to specify certain
invariants. For example, we had to write a special list type, with its
own copies of nil and cons. Similarly, to implement delMin we had to
create our own pair type.

This duplication of types is quite tedious. There should be a way
to just slap the desired invariants on to existing types, thereby facili-
tating their reuse. In a few chapters, we will see how to achieve this
reuse by abstracting refinements from the definitions of datatypes
or functions in the same way we abstract the element type a from
containers like [a] or BST a.

http://goto.ucsd.edu/~rjhala/liquid/abstract_refinement_types.pdf
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Boolean Measures

In the last two chapters, we saw how refinements could be used to
reason about the properties of basic Int values like vector indices, or
the elements of a list. Next, let’s see how we can describe properties
of aggregate structures like lists and trees, and use these properties to
improve the APIs for operating over such structures.

Partial Functions

As a motivating example, let us return to the problem of ensuring the
safety of division. Recall that we wrote:

{-@ divide :: Int -> NonZero -> Int @-}

divide _ 0 = die "divide-by-zero"

divide x n = x `div` n

The Precondition asserted by the input type NonZero allows
LiquidHaskell to prove that the die is never executed at run-time, but
consequently, requires us to establish that wherever divide is used,
the second parameter be provably non-zero. This requirement is not
onerous when we know what the divisor is statically

avg2 x y = divide (x + y) 2

avg3 x y z = divide (x + y + z) 3

However, it can be more of a challenge when the divisor is obtained
dynamically. For example, let’s write a function to find the number of
elements in a list
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size :: [a] -> Int

size [] = 0

size (_:xs) = 1 + size xs

and use it to compute the average value of a list:

avgMany xs = divide total elems

where

total = sum xs

elems = size xs

Uh oh. LiquidHaskell wags its finger at us!

src/04-measure.lhs:77:27-31: Error: Liquid Type Mismatch

Inferred type

VV : Int | VV == elems

not a subtype of Required type

VV : Int | 0 /= VV

In Context

VV : Int | VV == elems

elems : Int

We cannot prove that the divisor is NonZero, because it can be 0
– when the list is empty. Thus, we need a way of specifying that the
input to avgMany is indeed non-empty!

Lifting Functions to Measures

How shall we tell LiquidHaskell that a list is non-empty? Recall
the notion of measure previously introduced to describe the size of
a Data.Vector. In that spirit, let’s write a function that computes
whether a list is not empty:

notEmpty :: [a] -> Bool

notEmpty [] = False

notEmpty (_:_) = True

A measure is a total Haskell function,
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1. With a single equation per data constructor, and

2. Guaranteed to terminate, typically via structural recursion.

We can tell LiquidHaskell to lift a function meeting the above require-
ments into the refinement logic by declaring:

{-@ measure notEmpty @-}

Non-Empty Lists can now be described as the subset of plain old
Haskell lists [a] for which the predicate notEmpty holds

{-@ type NEList a = {v:[a] | notEmpty v} @-}

We can now refine various signatures to establish the safety of the
list-average function.

Size returns a non-zero value if the input list is not-empty. We capture
this condition with an implication in the output refinement.

{-@ size :: xs:[a] -> {v:Nat | notEmpty xs => v > 0} @-}

Average is only sensible for non-empty lists. Happily, we can specify
this using the refined NEList type:

{-@ average :: NEList Int -> Int @-}

average xs = divide total elems

where

total = sum xs

elems = size xs

Exercise 6.1 (Average, Maybe). Fix the code below to obtain an alternate
variant average' that returns Nothing for empty lists:

average' :: [Int] -> Maybe Int

average' xs

| ok = Just $ divide (sum xs) elems

| otherwise = Nothing

where

elems = size xs

ok = True -- What expression goes here?
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Exercise 6.2 (Debugging Specifications). An important aspect of formal
verifiers like LiquidHaskell is that they help establish properties not just of
your implementations but equally, or more importantly, of your specifi-
cations. In that spirit, can you explain why the following two variants of
size are rejected by LiquidHaskell?

{-@ size1 :: xs:NEList a -> Pos @-}

size1 [] = 0

size1 (_:xs) = 1 + size1 xs

{-@ size2 :: xs:[a] -> {v:Int | notEmpty xs => v > 0} @-}

size2 [] = 0

size2 (_:xs) = 1 + size2 xs

A Safe List API

Now that we can talk about non-empty lists, we can ensure the safety
of various list-manipulating functions which are only well-defined on
non-empty lists and crash otherwise.

Head and Tail are two of the canonical dangerous functions, that
only work on non-empty lists, and burn horribly otherwise. We can
type them simple as:

{-@ head :: NEList a -> a @-}

head (x:_) = x

head [] = die "Fear not! 'twill ne'er come to pass"

{-@ tail :: NEList a -> [a] @-}

tail (_:xs) = xs

tail [] = die "Relaxeth! this too shall ne'er be"

LiquidHaskell uses the precondition to deduce that the second
equations are dead code. Of course, this requires us to establish that
callers of head and tail only invoke the respective functions with
non-empty lists.

Exercise 6.3 (Safe Head). Write down a specification for null such that
safeHead is verified. Do not force null to only take non-empty inputs, that
defeats the purpose. Instead, its type should say that it works on all lists and
returns False if and only if the input is non-empty.

Hint: You may want to refresh your memory about implies ==> and
<=> from the chapter on logic.
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safeHead :: [a] -> Maybe a

safeHead xs

| null xs = Nothing

| otherwise = Just $ head xs

{-@ null :: [a] -> Bool @-}

null [] = True

null (_:_) = False

Groups

Lets use the above to write a function that chunks sequences into
non-empty groups of equal elements:

{-@ groupEq :: (Eq a) => [a] -> [NEList a] @-}

groupEq [] = []

groupEq (x:xs) = (x:ys) : groupEq zs

where

(ys, zs) = span (x ==) xs

By using the fact that each element in the output returned by groupEq

is in fact of the form x:ys, LiquidHaskell infers that groupEq returns a
[NEList a] that is, a list of non-empty lists.

To Eliminate Stuttering from a string, we can use groupEq to split
the string into blocks of repeating Chars, and then just extract the first
Char from each block:

-- >>> eliminateStutter "ssstringssss liiiiiike thisss"

-- "strings like this"

eliminateStutter xs = map head $ groupEq xs

LiquidHaskell automatically instantiates the type parameter for map

in eliminateStutter to notEmpty v to deduce that head is only called
on non-empty lists.

Foldl1 is one of my favorite folds; it uses the first element of the
sequence as the initial value. Of course, it should only be called with
non-empty sequences!

{-@ foldl1 :: (a -> a -> a) -> NEList a -> a @-}

foldl1 f (x:xs) = foldl f x xs

foldl1 _ [] = die "foldl1"
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foldl :: (a -> b -> a) -> a -> [b] -> a

foldl _ acc [] = acc

foldl f acc (x:xs) = foldl f (f acc x) xs

To Sum a non-empty list of numbers, we can just perform a foldl1

with the + operator: Thanks to the precondition, LiquidHaskell will
prove that the die code is indeed dead. Thus, we can write

{-@ sum :: (Num a) => NEList a -> a @-}

sum [] = die "cannot add up empty list"

sum xs = foldl1 (+) xs

Consequently, we can only invoke sum on non-empty lists, so:

sumOk = sum [1,2,3,4,5] -- is accepted by LH, but

sumBad = sum [] -- is rejected by LH

Exercise 6.4 (Weighted Average). The function below computes a weighted
average of its input. Unfortunately, LiquidHaskell is not very happy about
it. Can you figure out why, and fix the code or specification appropriately?

{-@ wtAverage :: NEList (Pos, Pos) -> Int @-}

wtAverage wxs = divide totElems totWeight

where

elems = map (\(w, x) -> w * x) wxs

weights = map (\(w, _) -> w ) wxs

totElems = sum elems

totWeight = sum weights

sum = foldl1 (+)

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

Hint: On what variables are the errors? How are those variables’
values computed? Can you think of a better specification for the
function(s) doing those computations?

Exercise 6.5 (Mitchell’s Risers). Non-empty lists pop up in many places,
and it is rather convenient to have the type system track non-emptiness
without having to make up special types. Consider the risers function,
popularized by Neil Mitchell. safeSplit requires its input be non-empty;

http://neilmitchell.blogspot.com/2008/03/sorting-at-speed.html
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but LiquidHaskell believes that the call inside risers fails this requirement.
Fix the specification for risers so that it is verified.

{-@ risers :: (Ord a) => [a] -> [[a]] @-}

risers :: (Ord a) => [a] -> [[a]]

risers [] = []

risers [x] = [[x]]

risers (x:y:etc)

| x <= y = (x:s) : ss

| otherwise = [x] : (s : ss)

where

(s, ss) = safeSplit $ risers (y:etc)

{-@ safeSplit :: NEList a -> (a, [a]) @-}

safeSplit (x:xs) = (x, xs)

safeSplit _ = die "don't worry, be happy"

Recap

In this chapter we saw how LiquidHaskell lets you

1. Define structural properties of data types,

2. Use refinements over these properties to describe key invariants
that establish, at compile-time, the safety of operations that might
otherwise fail on unexpected values at run-time, all while,

3. Working with plain Haskell types, here, Lists, without having to
make up new types which can have the unfortunate effect of
adding a multitude of constructors and conversions which often
clutter implementations and specifications.

Of course, we can do a lot more with measures, so let’s press on!

http://blog.jbapple.com/2008/01/extra-type-safety-using-polymorphic.html




7

Numeric Measures

Many of the programs we have seen so far, for example those in here,
suffer from indexitis. This is a term coined by Richard Bird which
describes a tendency to perform low-level manipulations to iterate
over the indices into a collection, opening the door to various off-by-
one errors. Such errors can be eliminated by instead programming at
a higher level, using a wholemeal approach where the emphasis is on
using aggregate operations, like map, fold and reduce.

Wholemeal programming is no panacea as it still requires us to
take care when operating on different collections; if these collections
are incompatible, e.g. have the wrong dimensions, then we end up
with a fate worse than a crash, a possibly meaningless result. Fortu-
nately, LiquidHaskell can help. Lets see how we can use measures to
specify dimensions and create a dimension-aware API for lists which
can be used to implement wholemeal dimension-safe APIs.1 1 In a later chapter we will use this API

to implement K-means clustering.

Wholemeal Programming

Indexitis begone! As an example of wholemeal programming, let’s
write a small library that represents vectors as lists and matrices as
nested vectors:

data Vector a = V { vDim :: Int

, vElts :: [a]

}

deriving (Eq)

data Matrix a = M { mRow :: Int

, mCol :: Int

https://www.cambridge.org/core/books/pearls-of-functional-algorithm-design/B0CF0AC5A205AF9491298684113B088F
http://www.cs.ox.ac.uk/ralf.hinze/publications/ICFP09.pdf


66 programming with refinement types

, mElts :: Vector (Vector a)

}

deriving (Eq)

The Dot Product of two Vectors can be easily computed using a
fold:

dotProd :: (Num a) => Vector a -> Vector a -> a

dotProd vx vy = sum (prod xs ys)

where

prod = zipWith (\x y -> x * y)

xs = vElts vx

ys = vElts vy

Matrix Multiplication can similarly be expressed in a high-level,
wholemeal fashion, by eschewing low level index manipulations in
favor of a high-level iterator over the Matrix elements:

matProd :: (Num a) => Matrix a -> Matrix a -> Matrix a

matProd (M rx _ xs) (M _ cy ys)

= M rx cy elts

where

elts = for xs (\xi ->

for ys (\yj ->

dotProd xi yj

)

)

The Iteration embodied by the for combinator, is simply a map over
the elements of the vector.

for :: Vector a -> (a -> b) -> Vector b

for (V n xs) f = V n (map f xs)

Wholemeal programming frees us from having to fret about
low-level index range manipulation, but is hardly a panacea. Instead,
we must now think carefully about the compatibility of the various
aggregates. For example,

• dotProd is only sensible on vectors of the same dimension; if one
vector is shorter than another (i.e. has fewer elements) then we
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will won’t get a run-time crash but instead will get some gibberish
result that will be dreadfully hard to debug.

• matProd is only well defined on matrices of compatible dimensions;
the number of columns of mx must equal the number of rows of
my. Otherwise, again, rather than an error, we will get the wrong
output.2 2 In fact, while the implementation of

matProd breezes past GHC it is quite
wrong!

Specifying List Dimensions

In order to start reasoning about dimensions, we need a way to
represent the dimension of a list inside the refinement logic. 3 3 We could just use vDim, but that is a

cheat as there is no guarantee that the
field’s value actually equals the size of
the list!Measures are ideal for this task. Previously we saw how we could

lift Haskell functions up to the refinement logic. Lets write a measure
to describe the length of a list: 4 4 Recall that these must be inductively

defined functions, with a single equa-
tion per data-constructor

{-@ measure size @-}

{-@ size :: [a] -> Nat @-}

size [] = 0

size (_:rs) = 1 + size rs

Measures Refine Constructors

As with refined data definitions, the measures are translated into
strengthened types for the type’s constructors. For example, the size

measure is translated into:

data [a] where

[] :: {v: [a] | size v = 0}

(:) :: a -> xs:[a] -> {v:[a]|size v = 1 + size xs}

Multiple Measures may be defined for the same data type. For
example, in addition to the size measure, we can define a notEmpty

measure for the list type:

{-@ measure notEmpty @-}

notEmpty :: [a] -> Bool

notEmpty [] = False

notEmpty (_:_) = True

We Compose Different Measures
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simply by conjoining the refinements in the strengthened construc-
tors. For example, the two measures for lists end up yielding the
constructors:

data [a] where

[] :: {v: [a] | not (notEmpty v) && size v = 0}

(:) :: a

-> xs:[a]

-> {v:[a]| notEmpty v && size v = 1 + size xs}

This is a very significant advantage of using measures instead of
indices as in DML or Agda, as decouples property from structure, which
crucially enables the use of the same structure for many different
purposes. That is, we need not know a priori what indices to bake
into the structure, but can define a generic structure and refine it a
posteriori as needed with new measures.

We are almost ready to begin creating a dimension aware API for
lists; one last thing that is useful is a couple of aliases for describing
lists of a given dimension.

To make signatures symmetric let’s define an alias for plain old
(unrefined) lists:

type List a = [a]

A ListN is a list with exactly N elements, and a ListX is a list whose
size is the same as another list X. Note that when defining refinement
type aliases, we use uppercase variables like N and X to distinguish
value parameters from the lowercase type parameters like a.

{-@ type ListN a N = {v:List a | size v = N} @-}

{-@ type ListX a X = ListN a {size X} @-}

Lists: Size Preserving API

With the types and aliases firmly in our pockets, let us write
dimension-aware variants of the usual list functions. The implemen-
tations are the same as in the standard library i.e. Data.List, but the
specifications are enriched with dimension information.

Exercise 7.1 (Map). map yields a list with the same size as the input. Fix
the specification of map so that the prop_map is verified.

https://en.wikipedia.org/wiki/Dependent_ML
http://code.haskell.org/Agda/examples/Vec.agda
https://hackage.haskell.org/package/base-4.18.0.0/docs/Data-List.html
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{-@ map :: (a -> b) -> xs:List a -> List b @-}

map _ [] = []

map f (x:xs) = f x : map f xs

{-@ prop_map :: List a -> TRUE @-}

prop_map xs = size ys == size xs

where

ys = map id xs

Exercise 7.2 (Reverse). ⋆ We can reverse the elements of a list as shown
below, using the tail recursive function go. Fix the signature for go so that
LiquidHaskell can prove the specification for reverse.

Hint: How big is the list returned by go?

{-@ reverse :: xs:List a -> ListX a xs @-}

reverse xs = go [] xs

where

go acc [] = acc

go acc (x:xs) = go (x:acc) xs

zipWith requires both lists to have the same size, and produces a list
with that same size. 5 5 As made explicit by the call to die,

the input type rules out the case where
one list is empty and the other is not,
as in that case the former’s length is
zero while the latter’s is not, and hence,
different.

{-@ zipWith :: (a -> b -> c) -> xs:List a

-> ListX b xs

-> ListX c xs

@-}

zipWith f (a:as) (b:bs) = f a b : zipWith f as bs

zipWith _ [] [] = []

zipWith _ _ _ = die "no other cases"

unsafeZip The signature for zipWith is quite severe – it rules out the
case where the zipping occurs only up to the shorter input. Here’s a
function that actually allows for that case, where the output type is
the shorter of the two inputs:

{-@ zip :: as:[a] -> bs:[b] -> {v:[(a,b)] | Tinier v as bs} @-}

zip (a:as) (b:bs) = (a, b) : zip as bs

zip [] _ = []

zip _ [] = []

The output type uses the predicate Tinier Xs Ys Zs which defines
the length of Xs to be the smaller of that of Ys and Zs.6 6 In logic, if p then q else r is the

same as p => q && not p => r.
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{-@ predicate Tinier X Y Z = Min (size X) (size Y) (size Z) @-}

{-@ predicate Min X Y Z = (if Y < Z then X = Y else X = Z) @-}

Exercise 7.3 (Zip Unless Empty). ⋆⋆ In my experience, zip as shown
above is far too permissive and lets all sorts of bugs into my code. As middle
ground, consider zipOrNull below. Write a specification for zipOrNull
such that the code below is verified by LiquidHaskell.

zipOrNull :: [a] -> [b] -> [(a, b)]

zipOrNull [] _ = []

zipOrNull _ [] = []

zipOrNull xs ys = zipWith (,) xs ys

{-@ test1 :: {v: _ | size v = 2} @-}

test1 = zipOrNull [0, 1] [True, False]

{-@ test2 :: {v: _ | size v = 0} @-}

test2 = zipOrNull [] [True, False]

{-@ test3 :: {v: _ | size v = 0} @-}

test3 = zipOrNull ["cat", "dog"] []

Hint: Yes, the type is rather gross; it uses a bunch of disjunctions || ,
conjunctions && and implications =>.

Lists: Size Reducing API

Next, let’s look at some functions that truncate lists, in one way or
another.

Take lets us grab the first k elements from a list:

{-@ take' :: n:Nat -> ListGE a n -> ListN a n @-}

take' 0 _ = []

take' n (x:xs) = x : take' (n-1) xs

take' _ _ = die "won't happen"

The alias ListGE a n denotes lists whose length is at least n:

{-@ type ListGE a N = {v:List a | N <= size v} @-}

Exercise 7.4 (Drop). Drop is the yang to take’s yin: it returns the remain-
der after extracting the first k elements. Write a suitable specification for it
so that the below typechecks.
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drop 0 xs = xs

drop n (_:xs) = drop (n-1) xs

drop _ _ = die "won't happen"

{-@ test4 :: ListN String 2 @-}

test4 = drop 1 ["cat", "dog", "mouse"]

Exercise 7.5 (Take it easy). The version take' above is too restrictive; it in-
sists that the list actually have at least n elements. Modify the signature for
the real take function so that the code below is accepted by LiquidHaskell.

take 0 _ = []

take _ [] = []

take n (x:xs) = x : take (n-1) xs

{-@ test5 :: [ListN String 2] @-}

test5 = [ take 2 ["cat", "dog", "mouse"]

, take 20 ["cow", "goat"] ]

The Partition function breaks a list into two sub-lists of elements
that either satisfy or fail a user supplied predicate.

partition :: (a -> Bool) -> [a] -> ([a], [a])

partition _ [] = ([], [])

partition f (x:xs)

| f x = (x:ys, zs)

| otherwise = (ys, x:zs)

where

(ys, zs) = partition f xs

We would like to specify that the sum of the output tuple’s dimen-
sions equal the input list’s dimension. Lets write measures to access
the elements of the output:

{-@ measure fst @-}

fst (x, _) = x

{-@ measure snd @-}

snd (_, y) = y

We can now refine the type of partition as:
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{-@ partition :: _ -> xs:_ -> {v:_ | Sum2 v (size xs)} @-}

where Sum2 V N holds for a pair of lists dimensions add to N:

{-@ predicate Sum2 X N = size (fst X) + size (snd X) = N @-}

Exercise 7.6 (QuickSort). Use partition to implement quickSort.

-- >> quickSort [1,4,3,2]

-- [1,2,3,4]

{-@ quickSort :: (Ord a) => xs:List a -> ListX a xs @-}

quickSort [] = []

quickSort (x:xs) = undefined

{-@ test10 :: ListN String 2 @-}

test10 = quickSort (drop 1 ["cat", "dog", "mouse"])

Dimension Safe Vector API

We can use the dimension aware lists to create a safe vector API.

Legal Vectors are those whose vDim field actually equals the size of
the underlying list:

{-@ data Vector a = V { vDim :: Nat

, vElts :: ListN a vDim }

@-}

When vDim is used a selector function, it returns the vDim field of x.

{-@ vDim :: x:_ -> {v: Nat | v = vDim x} @-}

The refined data type prevents the creation of illegal vectors:

okVec = V 2 [10, 20] -- accepted by LH

badVec = V 2 [10, 20, 30] -- rejected by LH

As usual, it will be handy to have a few aliases.
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-- | Non Empty Vectors

{-@ type VectorNE a = {v:Vector a | vDim v > 0} @-}

-- | Vectors of size N

{-@ type VectorN a N = {v:Vector a | vDim v = N} @-}

-- | Vectors of Size Equal to Another Vector X

{-@ type VectorX a X = VectorN a {vDim X} @-}

To Create a Vector safely, we can start with the empty vector vEmp

and then add elements one-by-one with vCons:

{-@ vEmp :: VectorN a 0 @-}

vEmp = V 0 []

{-@ vCons :: a -> x:Vector a -> VectorN a {vDim x + 1} @-}

vCons x (V n xs) = V (n+1) (x:xs)

To Access vectors at a low-level, we can use equivalents of head and
tail, which only work on non-empty Vectors:

{-@ vHd :: VectorNE a -> a @-}

vHd (V _ (x:_)) = x

vHd _ = die "nope"

{-@ vTl :: x:VectorNE a -> VectorN a {vDim x - 1} @-}

vTl (V n (_:xs)) = V (n-1) xs

vTl _ = die "nope"

To Iterate over a vector we can use the for combinator:

{-@ for :: x:Vector a -> (a -> b) -> VectorX b x @-}

for (V n xs) f = V n (map f xs)

Binary Pointwise Operations should only be applied to compatible
vectors, i.e. vectors with equal dimensions. We can write a generic
binary pointwise operator:

{-@ vBin :: (a -> b -> c) -> x:Vector a

-> VectorX b x

-> VectorX c x
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@-}

vBin op (V n xs) (V _ ys) = V n (zipWith op xs ys)

The Dot Product of two Vectors can be now implemented in a
wholemeal and dimension safe manner, as:

{-@ dotProduct :: (Num a) => x:Vector a -> VectorX a x -> a @-}

dotProduct x y = sum $ vElts $ vBin (*) x y

Exercise 7.7 (Vector Constructor). Complete the specification and
implementation of vecFromList which creates a Vector from a plain list.

vecFromList :: [a] -> Vector a

vecFromList xs = undefined

test6 = dotProduct vx vy -- should be accepted by LH

where

vx = vecFromList [1,2,3]

vy = vecFromList [4,5,6]

Exercise 7.8 (Flatten). ⋆ Write a function to flatten a nested Vector.

{-@ flatten :: n:Nat

-> m:Nat

-> VectorN (VectorN a m) n

-> VectorN a {m * n}

@-}

flatten = undefined

The Cross Product of two vectors can now be computed in a nice
wholemeal style, by a nested iteration followed by a flatten.

{-@ product :: xs:Vector _

-> ys:Vector _

-> VectorN _ {vDim xs * vDim ys}

@-}

product xs ys = flatten (vDim ys) (vDim xs) xys

where

xys = for ys $ \y ->

for xs $ \x ->

x * y
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Dimension Safe Matrix API

The same methods let us create a dimension safe Matrix API which
ensures that only legal matrices are created and that operations are
performed on compatible matrices.

Legal Matrices are those where the dimension of the outer vector
equals the number of rows mRow and the dimension of each inner
vector is mCol. We can specify legality in a refined data definition:

{-@ data Matrix a =

M { mRow :: Pos

, mCol :: Pos

, mElts :: VectorN (VectorN a mCol) mRow

}

@-}

Notice that we avoid disallow degenerate matrices by requiring the
dimensions to be positive.

{-@ type Pos = {v:Int | 0 < v} @-}

It is convenient to have an alias for matrices of a given size:

{-@ type MatrixN a R C = {v:Matrix a | Dims v R C } @-}

{-@ predicate Dims M R C = mRow M = R && mCol M = C @-}

For example, we can use the above to write type:

{-@ ok23 :: MatrixN _ 2 3 @-}

ok23 = M 2 3 (V 2 [ V 3 [1, 2, 3]

, V 3 [4, 5, 6] ])

Exercise 7.9 (Legal Matrix). Modify the definitions of bad1 and bad2 so
that they are legal matrices accepted by LiquidHaskell.

bad1 :: Matrix Int

bad1 = M 2 3 (V 2 [ V 3 [1, 2 ]

, V 3 [4, 5, 6]])

bad2 :: Matrix Int

bad2 = M 2 3 (V 2 [ V 2 [1, 2]

, V 2 [4, 5] ])
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Exercise 7.10 (Matrix Constructor). ⋆ Write a function to construct a
Matrix from a nested list.

matFromList :: [[a]] -> Maybe (Matrix a)

matFromList [] = Nothing

matFromList xss@(xs:_)

| ok = Just (M r c vs)

| otherwise = Nothing

where

r = size xss

c = size xs

ok = undefined

vs = undefined

Exercise 7.11 (Refined Matrix Constructor). ⋆⋆ Refine the specification
for matFromList so that the following is accepted by LiquidHaskell.

{-@ mat23 :: Maybe (MatrixN Integer 2 2) @-}

mat23 = matFromList [ [1, 2]

, [3, 4] ]

Hint: It is easy to specify the number of rows from xss. How will you
figure out the number of columns? A measure may be useful.

Matrix Multiplication Finally, let’s implement matrix multipli-
cation. You’d think we did it already, but in fact the implementation
at the top of this chapter is all wrong (run it and see!) We cannot just
multiply any two matrices: the number of columns of the first must
equal to the rows of the second – after which point the result com-
prises the dotProduct of the rows of the first matrix with the columns
of the second.

{-@ matProduct :: (Num a) => x:Matrix a

-> y:{Matrix a | mCol x = mRow y}

-> MatrixN a (mRow x) (mCol y)

@-}

matProduct (M rx _ xs) my@(M _ cy _)

= M rx cy elts

where

elts = for xs (\xi ->

for ys' (\yj ->

dotProduct xi yj

)
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)

M _ _ ys' = transpose my

To iterate over the columns of the matrix my we just transpose it so the
columns become rows.

-- >>> ok32 == transpose ok23

-- True

ok32 = M 3 2 (V 3 [ V 2 [1, 4]

, V 2 [2, 5]

, V 2 [3, 6] ])

Exercise 7.12 (Matrix Transpose). ⋆⋆ Use the Vector API to complete the
implementation of txgo. For inspiration, you might look at the implementa-
tion of Data.List.transpose from the prelude. Better still, don’t.

{-@ transpose :: m:Matrix a -> MatrixN a (mCol m) (mRow m) @-}

transpose (M r c rows) = M c r $ txgo c r rows

{-@ txgo :: c:Nat -> r:Nat

-> VectorN (VectorN a c) r

-> VectorN (VectorN a r) c

@-}

txgo c r rows = undefined

Hint: As shown by ok23 and ok32, transpose works by stripping out
the heads of the input rows, to create the corresponding output rows.

Recap

In this chapter, we saw how to use measures to describe numeric
properties of structures like lists (Vector) and nested lists (Matrix).

1. Measures are structurally recursive functions, with a single equa-
tion per data constructor,

2. Measures can be used to create refined data definitions that pre-
vent the creation of illegal values,

3. Measures can then be used to enable safe wholemeal program-
ming, via dimension-aware APIs that ensure that operators only
apply to compatible values.

We can use numeric measures to encode various other properties
of data structures. We will see examples ranging from high-level AVL
trees, to low-level safe pointer arithmetic.

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-List.html#v:transpose
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Elemental Measures

Often, correctness requires us to reason about the set of elements
represented inside a data structure, or manipulated by a function.
Examples of this abound: for example, we’d like to know that:

• sorting routines return permutations of their inputs – i.e. return
collections whose elements are the same as the input set,

• resource management functions do not inadvertently create dupli-
cate elements or drop elements from set of tracked resources.

• syntax-tree manipulating procedures create well-scoped trees
where the set of used variables are contained within the set of
variables previously defined.

SMT Solvers support very expressive logics. In addition to linear
arithmetic and uninterpreted functions, they can efficiently decide
formulas over sets. Next, let’s see how LiquidHaskell lets us exploit
this fact to develop types and interfaces that guarantee invariants
over the set of elements of a structures.

Talking about Sets

First, we need a way to talk about sets in the refinement logic. We
could roll our own special Haskell type but for now, let’s just use the
Set a type from the prelude’s Data.Set.1 1 See this for a brief description of how

to work directly with the set operators
natively supported by LiquidHaskell.

LiquidHaskell Lifts the basic set operators from Data.Set into
the refinement logic. That is, the prelude defines the following logical
functions that correspond to the Haskell functions of the same name:

http://www.kroening.com/smt-lib-lsm.pdf
https://ucsd-progsys.github.io/liquidhaskell-blog/2013/03/26/talking-about-sets.lhs/
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measure empty :: Set a

measure singleton :: a -> Set a

measure member :: a -> Set a -> Bool

measure union :: Set a -> Set a -> Set a

measure intersection :: Set a -> Set a -> Set a

measure difference :: Set a -> Set a -> Set a

Interpreted Operators

The above operators are interpreted by the SMT solver. That is,
just like the SMT solver “knows”, via the axioms of the theory of
arithmetic that:

x = 1 + 1 ⇒ x = 2

is a valid formula, i.e. holds for all x, the solver “knows” that:

x = (singleton 1) ⇒ y = (singleton 2) ⇒ x = (intersection x (union y x))

This is because, the above formulas belong to a decidable Theory of
Sets reduces to McCarthy’s more general Theory of Arrays. 2 2 See this recent paper to learn how

modern SMT solvers prove equalities
like the above.

Proving QuickCheck Style Properties

To get the hang of whats going on, let’s do a few warm up exercises,
using LiquidHaskell to prove various simple theorems about sets and
operations over them.

We Refine The Set API to make it easy to write down theorems.
That is, we give the operators in Data.Set refinement type signatures
that precisely track their set-theoretic behavior:

empty :: {v:Set a | v = empty}

member :: x:a

-> s:Set a

-> {v:Bool | v <=> member x s}

singleton :: x:a -> {v:Set a | v = singleton x}

union :: x:Set a

-> y:Set a

-> {v:Set a | v = union x y}

intersection :: x:Set a

-> y:Set a

http://www-formal.stanford.edu/jmc/towards.ps
http://research.microsoft.com/en-us/um/people/leonardo/fmcad09.pdf
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-> {v:Set a | v = intersection x y}

difference :: x:Set a

-> y:Set a

-> {v:Set a | v = difference x y}

We Can Assert Theorems as QuickCheck style properties, that is,
as functions from arbitrary inputs to a Bool output that must always
be True. Lets define aliases for the Booleans that are always True or
False

{-@ type True = {v:Bool | v} @-}

{-@ type False = {v:Bool | not v} @-}

We can use True to state theorems. For example, the unexciting
arithmetic equality above becomes:

{-@ prop_one_plus_one_eq_two :: _ -> True @-}

prop_one_plus_one_eq_two x = (x == 1 + 1) `implies` (x == 2)

Where implies is just the implication function over Bool

{-@ implies :: p:Bool -> q:Bool -> Implies p q @-}

implies False _ = True

implies _ True = True

implies _ _ = False

and Implies p q is defined as

{-@ type Implies P Q = {v:_ | v <=> (P => Q)} @-}

Exercise 8.1 (Bounded Addition). Write and prove a QuickCheck style
theorem that: ∀x, y.x < 100 ∧ y < 100 ⇒ x + y < 200.

{-@ prop_x_y_200 :: _ -> _ -> True @-}

prop_x_y_200 x y = False -- fill in the theorem body

The Commutativity of Intersection can be easily stated and
proved as a QuickCheck style theorem:

{-@ prop_intersection_comm :: _ -> _ -> True @-}

prop_intersection_comm x y

= (x `intersection` y) == (y `intersection` x)
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The Associativity of Union can similarly be confirmed:

{-@ prop_union_assoc :: _ -> _ -> _ -> True @-}

prop_union_assoc x y z

= (x `union` (y `union` z)) == (x `union` y) `union` z

The Distributivity Laws for Boolean Algebra can be verified by
writing properties over the relevant operators. For example, let’s
check that intersection distributes over union:

{-@ prop_intersection_dist :: _ -> _ -> _ -> True @-}

prop_intersection_dist x y z

= x `intersection` (y `union` z)

==

(x `intersection` y) `union` (x `intersection` z)

Non-Theorems should be rejected. So, while we’re at it, let’s make
sure LiquidHaskell doesn’t prove anything that isn’t true . . .

{-@ prop_cup_dif_bad :: _ -> _ -> True @-}

prop_cup_dif_bad x y

= pre `implies` (x == ((x `union` y) `difference` y))

where

pre = True -- Fix this with a non-trivial precondition

Exercise 8.2 (Set Difference). Why does the above property fail?

1. Use QuickCheck (or your own little grey cells) to find a counterexam-
ple for the property prop_cup_dif_bad.

2. Use the counterexample to assign pre a non-trivial (i.e. other than
False) condition so that the property can be proved.

Thus, LiquidHaskell’s refined types offer a nice interface for
interacting with the SMT solvers in order to prove theorems, while
letting us use QuickCheck to generate counterexamples.3 3 The SBV and Leon projects describe a

different DSL based approach for using
SMT solvers from Haskell and Scala
respectively.

Content-Aware List API

Lets return to our real goal, which is to verify properties of programs.
First, we need a way to refine the list API to precisely track the set of
elements in a list.

https://github.com/LeventErkok/sbv
http://lara.epfl.ch/w/leon
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The Elements of a List can be described by a simple recursive
measure that walks over the list, building up the set:

{-@ measure elts @-}

elts :: (Ord a) => [a] -> Set a

elts [] = empty

elts (x:xs) = singleton x `union` elts xs

Lets write a few helpful aliases for various refined lists that will then
make the subsequent specifications pithy and crisp.

• A list with elements S

{-@ type ListS a S = {v:[a] | elts v = S} @-}

• An empty list

{-@ type ListEmp a = ListS a {Set_empty 0} @-}

• A list whose contents equal those of list X

{-@ type ListEq a X = ListS a {elts X} @-}

• A list whose contents are a subset of list X

{-@ type ListSub a X = {v:[a]| Set_sub (elts v) (elts X)} @-}

• A list whose contents are the union of lists X and Y

{-@ type ListUn a X Y = ListS a {Set_cup (elts X) (elts Y)} @-}

• A list whose contents are exactly X and the contents of Y

{-@ type ListUn1 a X Y = ListS a {Set_cup (Set_sng X) (elts Y)} @-}

The Measures strengthens the data constructors for lists. That is
we get the automatically refined types for “nil” and “cons”:

data [a] where

[] :: ListEmp a

(:) :: x:a -> xs:[a] -> ListUn1 a x xs

Lets take our new vocabulary out for a spin!
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The Append function returns a list whose elements are the union of
the elements of the input Lists:

{-@ append' :: xs:_ -> ys:_ -> ListUn a xs ys @-}

append' [] ys = ys

append' (x:xs) ys = x : append' xs ys

Exercise 8.3 (Reverse). Write down a type for revHelper so that reverse'
is verified by LiquidHaskell.

{-@ reverse' :: xs:[a] -> ListEq a xs @-}

reverse' xs = revHelper [] xs

revHelper acc [] = acc

revHelper acc (x:xs) = revHelper (x:acc) xs

Exercise 8.4 (Halve). ⋆ Write down a specification for halve such that the
subsequent “theorem” prop_halve_append is proved by LiquidHaskell.

halve :: Int -> [a] -> ([a], [a])

halve 0 xs = ([], xs)

halve n (x:y:zs) = (x:xs, y:ys) where (xs, ys) = halve (n-1) zs

halve _ xs = ([], xs)

{-@ prop_halve_append :: _ -> _ -> True @-}

prop_halve_append n xs = elts xs == elts xs'

where

xs' = append' ys zs

(ys, zs) = halve n xs

Hint: You may want to remind yourself about the dimension-aware
signature for partition from the earlier chapter.

Exercise 8.5 (Membership). Write down a signature for elem that suffices
to verify test1 and test2.

{-@ elem :: (Eq a) => a -> [a] -> Bool @-}

elem _ [] = False

elem x (y:ys) = x == y || elem x ys

{-@ test1 :: True @-}

test1 = elem 2 [1, 2, 3]

{-@ test2 :: False @-}

test2 = elem 2 [1, 3]

https://ucsd-progsys.github.io/liquidhaskell-tutorial/07-measure-int.html#/listreducing


elemental measures 85

Permutations

Next, let’s use the refined list API to prove that various sorting
routines return permutations of their inputs, that is, return output lists
whose elements are the same as those of the input lists.4 4 Since we are focusing on the elements,

let’s not distract ourselves with the
ordering invariant and reuse plain old
lists. See this for how to specify and
verify order with plain old lists.Insertion Sort is the simplest of all the list sorting routines; we

build up an (ordered) output list inserting each element of the input
list into the appropriate position of the output:

insert x [] = [x]

insert x (y:ys)

| x <= y = x : y : ys

| otherwise = y : insert x ys

Thus, the output of insert has all the elements of the input xs, plus
the new element x:

{-@ insert :: x:a -> xs:[a] -> ListUn1 a x xs @-}

The above signature lets us prove that the output of the sorting
routine indeed has the elements of the input:

{-@ insertSort :: (Ord a) => xs:[a] -> ListEq a xs @-}

insertSort [] = []

insertSort (x:xs) = insert x (insertSort xs)

Exercise 8.6 (Merge). Fix the specification of merge so that the subsequent
property prop_merge_app is verified by LiquidHaskell.

{-@ merge :: xs:[a] -> ys:[a] -> [a] @-}

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys)

| x <= y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

{-@ prop_merge_app :: _ -> _ -> True @-}

prop_merge_app xs ys = elts zs == elts zs'

where

zs = append' xs ys

zs' = merge xs ys

http://goto.ucsd.edu/~rjhala/liquid/haskell/blog/blog/2013/07/29/putting-things-in-order.lhs/
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Exercise 8.7 (Merge Sort). ⋆⋆ Once you write the correct type for merge
above, you should be able to prove the unexpected signature for mergeSort
below.

1. Make sure you are able verify the given signature.

2. Obviously we don’t want mergeSort to return the empty list, so there’s
a bug. Find and fix it, so that you cannot prove that the output is empty,
but can instead prove that the output is ListEq a xs.

{-@ mergeSort :: (Ord a) => xs:[a] -> ListEmp a @-}

mergeSort [] = []

mergeSort xs = merge (mergeSort ys) (mergeSort zs)

where

(ys, zs) = halve mid xs

mid = length xs `div` 2

Uniqueness

Often, we want to enforce the invariant that a particular collection
contains no duplicates; as multiple copies in a collection of file handles
or system resources can create unpleasant leaks. For example, the
xmonad window manager creates a sophisticated zipper data struc-
ture to hold the list of active user windows and carefully maintains
the invariant that that the zipper contains no duplicates. Next, let’s
see how to specify and verify this invariant using LiquidHaskell, first
for lists, and then for a simplified zipper.

To Specify Uniqueness we need a way of saying that a list has no
duplicates. There are many ways to do so; the simplest is a measure:

{-@ measure unique @-}

unique :: (Ord a) => [a] -> Bool

unique [] = True

unique (x:xs) = unique xs && not (member x (elts xs))

We can use the above to write an alias for duplicate-free lists

{-@ type UList a = {v:[a] | unique v }@-}

Lets quickly check that the right lists are indeed unique

http://xmonad.org/
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{-@ isUnique :: UList Int @-}

isUnique = [1, 2, 3] -- accepted by LH

{-@ isNotUnique :: UList Int @-}

isNotUnique = [1, 2, 3, 1] -- rejected by LH

The Filter function returns a subset of its elements, and hence,
preserves uniqueness. That is, if the input is unique, the output is too:

{-@ filter :: (a -> Bool)

-> xs:UList a

-> {v:ListSub a xs | unique v}

@-}

filter _ [] = []

filter f (x:xs)

| f x = x : xs'

| otherwise = xs'

where

xs' = filter f xs

Exercise 8.8 (Filter). It seems a bit draconian to require that filter only
be called with unique lists. Write down a more permissive type for filter'
below such that the subsequent uses are verified by LiquidHaskell.

filter' _ [] = []

filter' f (x:xs)

| f x = x : xs'

| otherwise = xs'

where

xs' = filter' f xs

{-@ test3 :: UList _ @-}

test3 = filter' (> 2) [1,2,3,4]

{-@ test4 :: [_] @-}

test4 = filter' (> 3) [3,1,2,3]

Exercise 8.9 (Reverse). ⋆ When we reverse their order, the set of elements
is unchanged, and hence unique (if the input was unique). Why does Liquid-
Haskell reject the below? Can you fix things so that we can prove that the
output is a UList a? (When you are done, you should be able to remove the
assume from the signature below, and still have LH verify the code.)
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{-@ assume reverse :: xs:UList a -> UList a @-}

reverse :: [a] -> [a]

reverse = go []

where

{-@ go :: acc:[a] -> xs:[a] -> [a] @-}

go acc [] = acc

go acc (x:xs) = go (x:acc) xs

The Nub function constructs a unique list from an arbitrary input by
traversing the input and tossing out elements that are already seen:

{-@ nub :: [a] -> UList a @-}

nub xs = go [] xs

where

{-@ go :: UList a -> xs:[a] -> UList a / [len xs] @-}

go seen [] = seen

go seen (x:xs)

| x `isin` seen = go seen xs

| otherwise = go (x:seen) xs

The key membership test is done by isin, whose output is True

exactly when the element is in the given list. 5 5 Which should be clear by now, if you
did a certain exercise above . . . .

-- FIXME

{-@ predicate In X Xs = Set_mem X (elts Xs) @-}

{-@ isin :: x:_ -> ys:_ -> {v:Bool | v <=> In x ys }@-}

isin x (y:ys)

| x == y = True

| otherwise = x `isin` ys

isin _ [] = False

Exercise 8.10 (Append). ⋆ Why does appending two ULists not return a
UList? Fix the type signature below so that you can prove that the output is
indeed unique.

{-@ append :: UList a -> UList a -> UList a @-}

append [] ys = ys

append (x:xs) ys = x : append xs ys

Exercise 8.11 (Range). ⋆⋆ range i j returns the list of Int between
i and j. LiquidHaskell refuses to acknowledge that the output is indeed a
UList. Fix the code so that LiquidHaskell verifies that it implements the
given signature (and of course, computes the same result.)
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{-@ type Btwn I J = {v:_ | I <= v && v < J} @-}

{-@ range :: i:Int -> j:Int -> UList (Btwn i j) @-}

range i j

| i < j = i : range (i + 1) j

| otherwise = []

Hint: This may be easier to do after you read this chapter about
lemmas.

Unique Zippers

A zipper is an aggregate data structure that is used to arbitrarily
traverse the structure and update its contents. For example, a zipper
for a list is a data type that contains an element (called focus) that we
are currently focus-ed on, a list of elements to the left of (i.e. before)
the focus, and a list of elements to the right (i.e. after) the focus.

data Zipper a = Zipper {

focus :: a

, left :: [a]

, right :: [a]

}

xmonad is a wonderful tiling window manager, that uses a zipper to
store the set of windows being managed. xmonad requires the crucial
invariant that the values in the zipper be unique, that is, be free of
duplicates.

We Refine Zipper to capture the requirement that legal zippers are
unique. To this end, we state that the left and right lists are unique,
disjoint, and do not contain focus.

{-@ data Zipper a = Zipper {

focus :: a

, left :: {v: UList a | not (In focus v)}

, right :: {v: UList a | not (In focus v) && Disj v left }

} @-}

{-@ predicate Disj X Y = Disjoint (elts X) (elts Y) @-}

http://hackage.haskell.org/package/xmonad-0.11/docs/XMonad-StackSet.html
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Our Refined Zipper Constructor makes illegal states unrepre-
sentable. That is, by construction, we will ensure that every Zipper is
free of duplicates. For example, it is straightforward to create a valid
Zipper from a unique list:

{-@ differentiate :: UList a -> Maybe (Zipper a) @-}

differentiate [] = Nothing

differentiate (x:xs) = Just $ Zipper x [] xs

Exercise 8.12 (Deconstructing Zippers). ⋆ Dually, the elements of
a unique zipper tumble out into a unique list. Strengthen the types of
reverse and append above so that LiquidHaskell accepts the below signa-
tures for integrate:

{-@ integrate :: Zipper a -> UList a @-}

integrate (Zipper x l r) = reverse l `append` (x : r)

We can Shift the Focus element to the left or right while preserv-
ing the uniqueness invariant. Here’s the code that shifts the focus to
the left:

focusLeft :: Zipper a -> Zipper a

focusLeft (Zipper t (l:ls) rs) = Zipper l ls (t:rs)

focusLeft (Zipper t [] rs) = Zipper x xs []

where

(x:xs) = reverse (t:rs)

To shift to the right, we simply reverse the elements and shift to the
left:

focusRight :: Zipper a -> Zipper a

focusRight = reverseZipper . focusLeft . reverseZipper

reverseZipper :: Zipper a -> Zipper a

reverseZipper (Zipper t ls rs) = Zipper t rs ls

To Filter elements from a zipper, we need to take care when the
focus itself, or all the elements get eliminated. In the latter case, there
is no Zipper and so the operation returns a Maybe:

filterZipper :: (a -> Bool) -> Zipper a -> Maybe (Zipper a)

filterZipper p (Zipper f ls rs)

= case filter p (f:rs) of
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f':rs' -> Just $ Zipper f' (filter p ls) rs'

[] -> case filter p ls of

f':ls' -> Just $ Zipper f' ls' []

[] -> Nothing

Thus, by using LiquidHaskell’s refinement types, and the SMT
solvers native reasoning about sets, we can ensure the key unique-
ness invariant holds in the presence of various tricky operations that
are performed over Zippers.

Recap

In this chapter, we saw how SMT solvers can let us reason precisely
about the actual contents of data structures, via the theory of sets. In
particular, we saw how to:

• Lift set-theoretic primitives to refined Haskell functions from the
Data.Set library,

• Define measures like elts that characterize the set of elements of
structures, and unique that describe high-level application specific
properties about those sets,

• Specify and verify that implementations enjoy various functional cor-
rectness properties, e.g. that sorting routines return permutations
of their inputs, and various zipper operators preserve uniqueness.

Next, we present a variety of longer case-studies that illustrate the
techniques developed so far on particular application domains.
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Case Study: Okasaki’s Lazy Queues

Lets start with a case study that is simple enough to explain without
pages of code, yet complex enough to show off whats cool about
dependency: Chris Okasaki’s beautiful Lazy Queues. This structure
leans heavily on an invariant to provide fast insertion and deletion.
Let’s see how to enforce that invariant with LiquidHaskell.

Queues

A queue is a structure into which we can insert and remove data
such that the order in which the data is removed is the same as the
order in which it was inserted.

Figure 9.1: A Queue is a structure
into which we can insert and remove
elements. The order in which the
elements are removed is the same as the
order in which they were inserted.

To efficiently implement a queue we need to have rapid access to
both the front as well as the back because we remove elements from

http://www.westpoint.edu/eecs/SiteAssets/SitePages/Faculty%20Publication%20Documents/Okasaki/jfp95queue.pdf
http://en.wikipedia.org/wiki/Queue_%28abstract_data_type%29
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former and insert elements into the latter. This is quite straightfor-
ward with explicit pointers and mutation – one uses an old school
linked list and maintains pointers to the head and the tail. But can
we implement the structure efficiently without having stoop so low?

Chris Okasaki came up with a very cunning way to implement
queues using a pair of lists – let’s call them front and back which
represent the corresponding parts of the Queue.

• To insert elements, we just cons them onto the back list,

• To remove elements, we just un-cons them from the front list.

Figure 9.2: We can implement a Queue
with a pair of lists; respectively repre-
senting the front and back.

The catch is that we need to shunt elements from the back to the
front every so often, e.g. we can transfer the elements from the back

to the front, when:

1. a remove call is triggered, and

2. the front list is empty.

Okasaki’s first insight was to note that every element is only
moved once from the back to the front; hence, the time for insert

and remove could be O(1) when amortized over all the operations.
This is perfect, except that some set of unlucky remove calls (which
occur when the front is empty) are stuck paying the bill. They have
a rather high latency up to O(n) where n is the total number of opera-
tions.
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Figure 9.3: Transferring Elements from
back to front.

Okasaki’s second insight saves the day: he observed that all we
need to do is to enforce a simple balance invariant:

Size of front ≥ Size of back

If the lists are lazy i.e. only constructed as the head value is de-
manded, then a single remove needs only a tiny O(log n) in the worst
case, and so no single remove is stuck paying the bill.

Lets implement Queues and ensure the crucial invariant(s) with
LiquidHaskell. What we need are the following ingredients:

1. A type for Lists, and a way to track their size,

2. A type for Queues which encodes the balance invariant

3. A way to implement the insert, remove and transfer operations.

Sized Lists

The first part is super easy. Let’s define a type:

data SList a = SL { size :: Int, elems :: [a] }

We have a special field that saves the size because otherwise, we
have a linear time computation that wrecks Okasaki’s careful analysis.
(Actually, he presents a variant which does not require saving the size
as well, but that’s for another day.)

How can we be sure that size is indeed the real size of elems? Let’s
write a function to measure the real size:
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{-@ measure realSize @-}

realSize :: [a] -> Int

realSize [] = 0

realSize (_:xs) = 1 + realSize xs

Now, we can simply specify a refined type for SList that ensures
that the real size is saved in the size field:

{-@ data SList a = SL {

size :: Nat

, elems :: {v:[a] | realSize v = size}

}

@-}

As a sanity check, consider this:

okList = SL 1 ["cat"] -- accepted

badList = SL 1 [] -- rejected

Lets define an alias for lists of a given size N:

{-@ type SListN a N = {v:SList a | size v = N} @-}

Finally, we can define a basic API for SList.

To Construct lists, we use nil and cons:

{-@ nil :: SListN a 0 @-}

nil = SL 0 []

{-@ cons :: a -> xs:SList a -> SListN a {size xs + 1} @-}

cons x (SL n xs) = SL (n+1) (x:xs)

Exercise 9.1 (Destructing Lists). We can destruct lists by writing a hd and
tl function as shown below. Fix the specification or implementation such
that the definitions typecheck.

{-@ tl :: xs:SList a -> SListN a {size xs - 1} @-}

tl (SL n (_:xs)) = SL (n-1) xs

tl _ = die "empty SList"

{-@ hd :: xs:SList a -> a @-}
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hd (SL _ (x:_)) = x

hd _ = die "empty SList"

Hint: When you are done, okHd should be verified, but badHd should
be rejected.

{-@ okList :: SListN String 1 @-}

okHd = hd okList -- accepted

badHd = hd (tl okList) -- rejected

Queue Type

It is quite straightforward to define the Queue type, as a pair of lists,
front and back, such that the latter is always smaller than the former:

{-@ data Queue a = Q {

front :: SList a

, back :: SListLE a (size front)

}

@-}

data Queue a = Q

{ front :: SList a

, back :: SList a

}

The alias SListLE a L corresponds to lists with at most N elements:

{-@ type SListLE a N = {v:SList a | size v <= N} @-}

As a quick check, notice that we cannot represent illegal Queues:

okQ = Q okList nil -- accepted, |front| > |back|

badQ = Q nil okList -- rejected, |front| < |back|

Queue Operations

Almost there! Now all that remains is to define the Queue API. The
code below is more or less identical to Okasaki’s (I prefer front and
back to his left and right.)
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The Empty Queue is simply one where both front and back are both
empty:

emp = Q nil nil

To Remove an element we pop it off the front by using hd and tl.
Notice that the remove is only called on non-empty Queues, which
together with the key balance invariant, ensures that the calls to hd

and tl are safe.

remove (Q f b) = (hd f, makeq (tl f) b)

Exercise 9.2 (Whither pattern matching?). Can you explain why we (or
Okasaki) didn’t use pattern matching here, and have instead opted for the
explicit hd and tl?

Exercise 9.3 (Queue Sizes). If you did the List Destructing exercise above,
then you will notice that the code for remove has a type error: namely, the
calls to hd and tl may fail if the f list is empty.

1. Write a measure to describe the queue size,

2. Use it to complete the definition of QueueN below, and

3. Use it to give remove a type that verifies the safety of the calls made to hd

and tl.

Hint: When you are done, okRemove should be accepted, badRemove
should be rejected, and emp should have the type shown below:

-- | Queues of size `N`

{-@ type QueueN a N = {v:Queue a | true} @-}

okRemove = remove example2Q -- accept

badRemove = remove example0Q -- reject

{-@ emp :: QueueN _ 0 @-}

{-@ example2Q :: QueueN _ 2 @-}

example2Q = Q (1 `cons` (2 `cons` nil)) nil

{-@ example0Q :: QueueN _ 0 @-}

example0Q = Q nil nil
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To Insert an element we just cons it to the back list, and call the
smart constructor makeq to ensure that the balance invariant holds:

insert e (Q f b) = makeq f (e `cons` b)

Exercise 9.4 (Insert). Write down a type for insert such that replicate
and okReplicate are accepted by LiquidHaskell, but badReplicate is
rejected.

{-@ replicate :: n:Nat -> a -> QueueN a n @-}

replicate 0 _ = emp

replicate n x = insert x (replicate (n-1) x)

{-@ okReplicate :: QueueN _ 3 @-}

okReplicate = replicate 3 "Yeah!" -- accept

{-@ badReplicate :: QueueN _ 3 @-}

badReplicate = replicate 1 "No!" -- reject

To Ensure the Invariant we use the smart constructor makeq,
which is where the heavy lifting happens. The constructor takes two
lists, the front f and back b and if they are balanced, directly returns
the Queue, and otherwise transfers the elements from b over using the
rotate function rot described next.

{-@ makeq :: f:SList a -> b:SList a -> QueueN a {size f + size b} @-}

makeq f b

| size b <= size f = Q f b

| otherwise = Q (rot f b nil) nil

Exercise 9.5 (Rotate). ⋆⋆ The Rotate function rot is only called when the
back is one larger than the front (we never let things drift beyond that). It
is arranged so that it the hd is built up fast, before the entire computation
finishes; which, combined with laziness provides the efficient worst-case
guarantee. Write down a type for rot so that it typechecks and verifies the
type for makeq.

Hint: You may have to modify a precondition in makeq to capture the
relationship between f and b.

rot f b acc

| size f == 0 = hd b `cons` acc

| otherwise = hd f `cons` rot (tl f) (tl b) (hd b `cons` acc)
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Exercise 9.6 (Transfer). Write down a signature for take which extracts
n elements from its input q and puts them into a new output Queue. When
you are done, okTake should be accepted, but badTake should be rejected.

take :: Int -> Queue a -> (Queue a, Queue a)

take 0 q = (emp , q)

take n q = (insert x out , q'')

where

(x , q') = remove q

(out, q'') = take (n-1) q'

{-@ okTake :: (QueueN _ 2, QueueN _ 1) @-}

okTake = take 2 exampleQ -- accept

badTake = take 10 exampleQ -- reject

exampleQ = insert "nal" $ insert "bob" $ insert "alice" $ emp

Recap

Well there you have it; Okasaki’s beautiful lazy Queue, with the
invariants easily expressed and checked with LiquidHaskell. This
example is particularly interesting because

1. The refinements express invariants that are critical for efficiency,

2. The code introspects on the size to guarantee the invariants, and

3. The code is quite simple and we hope, easy to follow!
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Case Study: Associative Maps

Recall the following from the introduction:

ghci> :m +Data.Map

ghci> let m = fromList [ ("haskell" , "lazy")

, ("javascript", "eager")]

ghci> m ! "haskell"

"lazy"

ghci> m ! "python"

"*** Exception: key is not in the map

The problem illustrated above is quite a pervasive one; associative
maps pop up everywhere. Failed lookups are the equivalent of
NullPointerDereference exceptions in languages like Haskell. It is
rather difficult to use Haskell’s type system to precisely characterize
the behavior of associative map APIs as ultimately, this requires
tracking the dynamic set of keys in the map.

In this case study, we’ll see how to combine two techniques, mea-
sures and refined data types, to analyze programs that implement and
use associative maps (e.g. Data.Map or Data.HashMap).

Specifying Maps

Lets start by defining a refined API for Associative Maps that tracks
the set of keys stored in the map, in order to statically ensure the
safety of lookups.

Types First, we need a type for Maps. As usual, let’s parameterize the
type with k for the type of keys and v for the type of values:
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data Map k v -- Currently left abstract

Keys To talk about the set of keys in a map, we will use a measure

measure keys :: Map k v -> Set k

that associates each Map to the Set of its defined keys. Next, we use
the above measure, and the usual Set operators to refine the types
of the functions that create, add and lookup key-value bindings, in
order to precisely track, within the type system, the keys that are
dynamically defined within each Map. 1 1 Recall that Empty, Union, In and the

other Set operators are described here.

Empty Maps have no keys in them. Hence, we type the empty Map as:

emp :: {m:Map k v | Empty (keys m)}

Add The function set takes a key k a value v and a map m and returns
the new map obtained by extending m with the binding k 7→ v. Thus,
the set of keys of the output Map includes those of the input plus the
singleton k, that is:

set :: k:k -> v -> m:Map k v -> {n: Map k v| AddKey k m n}

predicate AddKey K M N = keys N = Set_cup (Set_sng K) (keys M)

Query Finally, queries will only succeed for keys that are defined a
given Map. Thus, we define an alias:

predicate HasKey K M = In K (keys M)

and use it to type mem which checks if a key is defined in the Map and
get which actually returns the value associated with a given key.

-- | Check if key is defined

mem :: k:k -> m:Map k v -> {v:Bool | v <=> HasKey k m}

-- | Lookup key's value

get :: k:k -> {m:Map k v | HasKey k m} -> v
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Using Maps: Well Scoped Expressions

Rather than jumping into the implementation of the above Map API,
let’s write a client that uses Maps to implement an interpreter for a
tiny language. In particular, we will use maps as an environment
containing the values of bound variables, and we will use the refined
API to ensure that lookups never fail, and hence, that well-scoped
programs always reduce to a value.

Expressions Lets work with a simple language with integer con-
stants, variables, binding and arithmetic operators:2 2 Feel free to embellish the language

with fancier features like functions,
tuples etc.type Var = String

data Expr = Const Int

| Var Var

| Plus Expr Expr

| Let Var Expr Expr

Values We can use refinements to formally describe values as a subset
of Expr allowing us to reuse a bunch of code. To this end, we simply
define a (measure) predicate characterizing values:

{-@ measure val @-}

val :: Expr -> Bool

val (Const _) = True

val (Var _) = False

val (Plus _ _) = False

val (Let _ _ _ ) = False

and then we can use the lifted measure to define an alias for Val

denoting values:

{-@ type Val = {v:Expr | val v} @-}

we can use the above to write simple operators on Val, for example:

{-@ plus :: Val -> Val -> Val @-}

plus (Const i) (Const j) = Const (i+j)

plus _ _ = die "Bad call to plus"

Environments let us save values for the local” i.e. let-bound variables;
when evaluating an expression Var x we simply look up the value
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of x in the environment. This is why Maps were invented! Lets define
our environments as Maps from Variables to Values:

{-@ type Env = Map Var Val @-}

The above definition essentially specifies, inside the types, an eager
evaluation strategy: LiquidHaskell will prevent us from sticking
unevaluated Exprs inside the environments.

Evaluation proceeds via a straightforward recursion over the
structure of the expression. When we hit a Var we simply query its
value from the environment. When we hit a Let we compute the
bound expression and tuck its value into the environment before
proceeding within.

eval _ i@(Const _) = i

eval g (Var x) = get x g

eval g (Plus e1 e2) = plus (eval g e1) (eval g e2)

eval g (Let x e1 e2) = eval g' e2

where

g' = set x v1 g

v1 = eval g e1

The above eval seems rather unsafe; whats the guarantee that get
x g will succeed? For example, surely trying:

ghci> eval emp (Var "x")

will lead to some unpleasant crash. Shouldn’t we check if the vari-
ables is present and if not, fail with some sort of Variable Not Bound

error? We could, but we can do better: we can prove at compile time,
that such errors will not occur.

Free Variables are those whose values are not bound within an
expression, that is, the set of variables that appear in the expression,
but are not bound by a dominating Let. We can formalize this notion
as a (lifted) function:

{-@ measure free @-}

free :: Expr -> (Set Var)

free (Const _) = empty

free (Var x) = singleton x

free (Plus e1 e2) = xs1 `union` xs2
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where

xs1 = free e1

xs2 = free e2

free (Let x e1 e2) = xs1 `union` (xs2 `difference` xs)

where

xs1 = free e1

xs2 = free e2

xs = singleton x

An Expression is Closed with respect to an environment G if all
the free variables in the expression appear in G, i.e. the environment
contains bindings for all the variables in the expression that are
not bound within the expression. As we’ve seen repeatedly, often
a whole pile of informal hand-waving, can be succinctly captured
by a type definition that says the free variables in the Expr must be
contained in the keys of the environment G:

{-@ type ClosedExpr G = {v:Expr | Subset (free v) (keys G)} @-}

Closed Evaluation never goes wrong, i.e. we can ensure that eval
will not crash with unbound variables, as long as it is invoked with
suitable environments:

{-@ eval :: g:Env -> ClosedExpr g -> Val @-}

We can be sure an Expr is well-scoped if it has no free variables.Lets
use that to write a “top-level” evaluator:

{-@ topEval :: {v:Expr | Empty (free v)} -> Val @-}

topEval = eval emp

Exercise 10.1 (Wellformedness Check). Complete the definition of the
below function which checks if an Expr is well formed before evaluating it:

{-@ evalAny :: Env -> Expr -> Maybe Val @-}

evalAny g e

| ok = Just $ eval g e

| otherwise = Nothing

where

ok = undefined

Proof is all well and good, in the end, you need a few sanity tests to
kick the tires. So:
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tests = [v1, v2]

where

v1 = topEval e1 -- Rejected by LH

v2 = topEval e2 -- Accepted by LH

e1 = (Var x) `Plus` c1

e2 = Let x c10 e1

x = "x"

c1 = Const 1

c10 = Const 10

Exercise 10.2 (Closures). ⋆⋆ Extend the language above to include
functions. That is, extend Expr as below, (and eval and free respectively.)

data Expr = ... | Fun Var Expr | App Expr Expr

Just focus on ensuring the safety of variable lookups; ensuring
full type-safety (i.e. every application is to a function) is rather more
complicated and beyond the scope of what we’ve seen so far.

Implementing Maps: Binary Search Trees

We just saw how easy it is to use the Associative Map API to ensure
the safety of lookups, even though the Map has a “dynamically”
generated set of keys. Next, let’s see how we can implement a Map

library that respects the API using Binary Search Trees

Data Type First, let’s provide an implementation of the hitherto
abstract data type for Map. We shall use Binary Search Trees, wherein,
at each Node, the left (resp. right) subtree has keys that are less than
(resp. greater than) the root key.

{-@ data Map k v = Node { key :: k

, value :: v

, left :: Map {v:k | v < key} v

, right :: Map {v:k | key < v} v }

| Tip

@-}

Recall that the above refined data definition yields strengthened
data constructors that statically ensure that only legal, binary-search
ordered trees are created in the program.
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Defined Keys Next, we must provide an implementation of the
notion of the keys that are defined for a given Map. This is achieved
via the lifted measure function:

{-@ measure keys @-}

keys :: (Ord k) => Map k v -> Set k

keys Tip = empty

keys (Node k _ l r) = ks `union` kl `union` kr

where

kl = keys l

kr = keys r

ks = singleton k

Armed with the basic type and measure definition, we can start to
fill in the operations for Maps.

Exercise 10.3 (Empty Maps). To make sure you are following, fill in the
definition for an empty Map:

{-@ emp :: {m:Map k v | Empty (keys m)} @-}

emp = undefined

Exercise 10.4 (Insert). To add a key k' to a Map we recursively traverse
the Map zigging left or right depending on the result of comparisons with
the keys along the path. Unfortunately, the version below has an (all too
common!) bug, and hence, is rejected by LiquidHaskell. Find and fix the
bug so that the function is verified.

{-@ set :: (Ord k) => k:k -> v -> m:Map k v

-> {n: Map k v | AddKey k m n} @-}

set k' v' (Node k v l r)

| k' == k = Node k v' l r

| k' < k = set k' v l

| otherwise = set k' v r

set k' v' Tip = Node k' v' Tip Tip

Lookup Next, let’s write the mem function that returns the value
associated with a key k'. To do so we just compare k' with the root
key, if they are equal, we return the binding, and otherwise we go
down the left (resp. right) subtree if sought for key is less (resp.
greater) than the root key. Crucially, we want to check that lookup
never fails, and hence, we implement the Tip (i.e. empty) case with
die gets LiquidHaskell to prove that that case is indeed dead code,
i.e. never happens at run-time.
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{-@ get' :: (Ord k) => k:k -> m:{Map k v| HasKey k m} -> v @-}

get' k' m@(Node k v l r)

| k' == k = v

| k' < k = get' k' l

| otherwise = get' k' r

get' _ Tip = die "Lookup Never Fails"

Unfortunately the function above is rejected by LiquidHaskell. This
is a puzzler (and a bummer!) because in fact it is correct. So what
gives? Well, let’s look at the error for the call get' k' l

src/07-case-study-associative-maps.lhs:411:25: Error: Liquid Type Mismatch

Inferred type

VV : Map a b | VV == l

not a subtype of Required type

VV : Map a b | Set_mem k' (keys VV)

In Context

VV : Map a b | VV == l

k : a

l : Map a b

k' : a

LiquidHaskell is unable to deduce that the key k' definitely belongs
in the left subtree l. Well, let’s ask ourselves: why must k' belong in
the left subtree? From the input, we know HasKey k' m i.e. that k' is
somewhere in m. That is one of the following holds:

1. k' == k or,

2. HasKey k' l or,

3. HasKey k' r.

As the preceding guard k' == k fails, we (and LiquidHaskell) can
rule out case (1). Now, what about the Map tells us that case (2) must
hold, i.e. that case (3) cannot hold? The BST invariant, all keys in r

exceed k which itself exceeds k'. That is, all nodes in r are disequal to
k' and hence k' cannot be in r, ruling out case (3). Formally, we need
the fact that:

∀ key, t.t :: Map {key′ : k | key′ ̸= key} v ⇒ ¬(HasKey key t)

Conversion Lemmas Unfortunately, LiquidHaskell cannot auto-
matically deduce facts like the above, as they relate refinements of a
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container’s type parameters (here: key′ ̸= key, which refines the Maps
first type parameter) with properties of the entire container (here:
HasKey key t). Fortunately, it is easy to state, prove and use facts like
the above, via lemmas which are just functions. 3 3 Why does LiquidHaskell not automat-

ically deduce this information? This is
tricky to describe. Intuitively, because
there is no way of automatically con-
necting the traversal corresponding to
keys with the type variable k. I wish I
had a better way to explain this rather
subtle point; suggestions welcome!

Defining Lemmas To state a lemma, we need only convert it into
a type by viewing universal quantifiers as function parameters, and
implications as function types:

{-@ lemma_notMem :: key:k

-> m:Map {k:k | k /= key} v

-> {v:Bool | not (HasKey key m)}

@-}

lemma_notMem _ Tip = True

lemma_notMem key (Node _ _ l r) = lemma_notMem key l &&

lemma_notMem key r

Proving Lemmas Note how the signature for lemma_notMem corre-
sponds exactly to the missing fact from above. The “output” type
is a Bool refined with the proposition that we desire. We prove the
lemma simply by traversing the tree which lets LiquidHaskell build
up a proof for the output fact by inductively combining the proofs
from the subtrees.

Using Lemmas To use a lemma, we need to instantiate it to the par-
ticular keys and trees we care about, by “calling” the lemma function,
and forcing its result to be in the environment used to typecheck the
expression where we want to use the lemma. Say what? Here’s how
to use lemmas to verify get:

{-@ get :: (Ord k) => k:k -> m:{Map k v | HasKey k m} -> v @-}

get k' (Node k v l r)

| k' == k = v

| k' < k = assert (lemma_notMem k' r) $

get k' l

| otherwise = assert (lemma_notMem k' l) $

get k' r

get _ Tip = die "Lookup failed? Impossible."

By calling lemma_notMem we create a dummy Bool refined with
the fact not (HasKey k' r) (resp. not (HasKey k' l)). We force
the calls to get k' l (resp. get k' r) to be typechecked using the
materialized refinement by wrapping the calls in assert:
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assert _ x = x

Ghost Values This technique of materializing auxiliary facts via
ghost values is a well known idea in program verification. Usually,
one has to take care to ensure that ghost computations do not in-
terfere with the regular computations. If we had to actually execute
lemma_notMem it would wreck the efficient logarithmic lookup time,
assuming we kept the trees balanced, as we would traverse the entire
tree instead of just the short path to a node. 4 4 Which is what makes dynamic con-

tract checking inefficient for such
invariants.

Laziness comes to our rescue: as the ghost value is (trivially) not
needed, it is never computed. In fact, it is straightforward to entirely
erase the call in the compiled code, which lets us freely assert such
lemmas to carry out proofs, without paying any runtime penalty. In
an eager language we would have to do a bit of work to specifically
mark the computation as a ghost or irrelevant but in the lazy setting
we get this for free.

Exercise 10.5 (Membership Test). Capisce? Fix the definition of mem so
that it verifiably implements the given signature.

{-@ mem :: (Ord k) => k:k -> m:Map k v

-> {v:_ | v <=> HasKey k m} @-}

mem k' (Node k _ l r)

| k' == k = True

| k' < k = mem k' l

| otherwise = mem k' r

mem _ Tip = False

Exercise 10.6 (Fresh). ⋆⋆ To make sure you really understand this business
of ghosts values and proofs, complete the implementation of the following
function which returns a fresh integer that is distinct from all the values
in its input list:

{-@ fresh :: xs:[Int] -> {v:Int | not (Elem v xs)} @-}

fresh = undefined

To refresh your memory, here are the definitions for Elem we saw
earlier

{-@ predicate Elem X Ys = In X (elems Ys) @-}

{-@ measure elems @-}

elems [] = empty

elems (x:xs) = (singleton x) `union` (elems xs)
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Recap

In this chapter we saw how to combine several of the techniques
from previous chapters in a case study. We learned how to:

1. Define an API for associative maps that used refinements to track
the set of keys stored in a map, in order to prevent lookup failures,
the NullPointerDereference errors of the functional world,

2. Use the API to implement a small interpreter that is guaranteed
to never fail with UnboundVariable errors, as long as the input
expressions were closed,

3. Implement the API using Binary Search Trees; in particular, using
ghost lemmas to assert facts that LiquidHaskell is otherwise unable
to deduce automatically.
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Case Study: Pointers & Bytes

A large part of the allure of Haskell is its elegant, high-level ADTs
that ensure that programs won’t be plagued by problems like the
infamous SSL heartbleed bug.1 However, another part of Haskell’s 1 Assuming, of course, the absence of

errors in the compiler and run-time. . .charm is that when you really really need to, you can drop down to
low-level pointer twiddling to squeeze the most performance out of
your machine. But of course, that opens the door to the heartbleeds.

Wouldn’t it be nice to have our cake and eat it too? Wouldn’t it be
great if we could twiddle pointers at a low-level and still get the nice
safety assurances of high-level types? Lets see how LiquidHaskell
lets us have our cake and eat it too.

HeartBleeds in Haskell

Modern Languages like Haskell are ultimately built upon the foun-
dation of C. Thus, implementation errors could open up unpleasant
vulnerabilities that could easily slither past the type system and even
code inspection. As a concrete example, let’s look at a function that
uses the ByteString library to truncate strings:

chop' :: String -> Int -> String

chop' s n = s'

where

b = pack s -- down to low-level

b' = unsafeTake n b -- grab n chars

s' = unpack b' -- up to high-level

First, the function packs the string into a low-level bytestring b, then
it grabs the first n Characters from b and translates them back into a
high-level String. Lets see how the function works on a small test:

heartbleed.com
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ghci> let ex = "Ranjit Loves Burritos"

We get the right result when we chop a valid prefix:

ghci> chop' ex 10

"Ranjit Lov"

But, as illustrated in Figure 11.1, the machine silently reveals (or
more colorfully, bleeds) the contents of adjacent memory or if we use
an invalid prefix:

ghci> chop' ex 30

"Ranjit Loves Burritos\NUL\201\&1j\DC3\SOH\NUL"

Figure 11.1: Can we prevent the pro-
gram from leaking secrets via over-
flows?

Types against Overflows Now that we have stared the problem
straight in the eye, look at how we can use LiquidHaskell to prevent
the above at compile time. To this end, we decompose the system
into a hierarchy of levels (i.e. modules). Here, we have three levels:

1. Machine level Pointers

2. Library level ByteString

3. User level Application

Our strategy, as before, is to develop an refined API for each level such
that errors at each level are prevented by using the typed interfaces
for the lower levels. Next, let’s see how this strategy lets us safely
manipulate pointers.

Low-level Pointer API

To get started, let’s look at the low-level pointer API that is offered
by GHC and the run-time. First, let’s see who the dramatis personae
are and how they might let heartbleeds in. Then we will see how to
batten down the hatches with LiquidHaskell.
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Pointers are an (abstract) type Ptr a implemented by GHC.

-- | A value of type `Ptr a` represents a pointer to an object,

-- or an array of objects, which may be marshalled to or from

-- Haskell values of type `a`.

data Ptr a

Foreign Pointers are wrapped pointers that can be exported to and
from C code via the Foreign Function Interface.

data ForeignPtr a

To Create a pointer we use mallocForeignPtrBytes n which creates
a Ptr to a buffer of size n and wraps it as a ForeignPtr

mallocForeignPtrBytes :: Int -> ForeignPtr a

To Unwrap and actually use the ForeignPtr we use

withForeignPtr :: ForeignPtr a -- pointer

-> (Ptr a -> IO b) -- action

-> IO b -- result

That is, withForeignPtr fp act lets us execute a action act on the ac-
tual Ptr wrapped within the fp. These actions are typically sequences
of dereferences, i.e. reads or writes.

To Dereference a pointer, i.e. to read or update the contents at the
corresponding memory location, we use peek and poke respectively. 2 2 We elide the Storable type class

constraint to strip this presentation
down to the absolute essentials.

peek :: Ptr a -> IO a -- Read

poke :: Ptr a -> a -> IO () -- Write

For Fine Grained Access we can directly shift pointers to arbitrary
offsets using the pointer arithmetic operation plusPtr p off which
takes a pointer p an integer off and returns the address obtained
shifting p by off:

plusPtr :: Ptr a -> Int -> Ptr b

http://hackage.haskell.org/package/base/docs/Foreign-Ptr.html
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Example That was rather dry; let’s look at a concrete example of how
one might use the low-level API. The following function allocates a
block of 4 bytes and fills it with zeros:

zero4 = do fp <- mallocForeignPtrBytes 4

withForeignPtr fp $ \p -> do

poke (p `plusPtr` 0) zero

poke (p `plusPtr` 1) zero

poke (p `plusPtr` 2) zero

poke (p `plusPtr` 3) zero

return fp

where

zero = 0 :: Word8

While the above is perfectly all right, a small typo could easily slip
past the type system (and run-time!) leading to hard to find errors:

zero4' = do fp <- mallocForeignPtrBytes 4

withForeignPtr fp $ \p -> do

poke (p `plusPtr` 0) zero

poke (p `plusPtr` 1) zero

poke (p `plusPtr` 2) zero

poke (p `plusPtr` 8) zero

return fp

where

zero = 0 :: Word8

A Refined Pointer API

Wouldn’t it be great if we had an assistant to helpfully point out
the error above as soon as we wrote it? 3 We will use the following 3 In Vim or Emacs or online, you’d see

the error helpfully highlighted.strategy to turn LiquidHaskell into such an assistant:

1. Refine pointers with allocated buffer size,

2. Track sizes in pointer operations,

3. Enforce pointer are valid at reads and writes.

To Refine Pointers with the size of their associated buffers, we
can use an abstract measure, i.e. a measure specification without any
underlying implementation.
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-- | Size of `Ptr`

measure plen :: Ptr a -> Int

-- | Size of `ForeignPtr`

measure fplen :: ForeignPtr a -> Int

It is helpful to define aliases for pointers of a given size N:

type PtrN a N = {v:Ptr a | plen v = N}

type ForeignPtrN a N = {v:ForeignPtr a | fplen v = N}

Abstract Measures are extremely useful when we don’t have
a concrete implementation of the underlying value, but we know
that the value exists. Here, we don’t have the value – inside Haskell
– because the buffers are manipulated within C. However, this is no
cause for alarm as we will simply use measures to refine the API, not
to perform any computations. 4 4 This is another ghost specification.

To Refine Allocation we stipulate that the size parameter be
non-negative, and that the returned pointer indeed refers to a buffer
with exactly n bytes:

mallocForeignPtrBytes :: n:Nat -> ForeignPtrN a n

To Refine Unwrapping we specify that the action gets as input, an
unwrapped Ptr whose size equals that of the given ForeignPtr.

withForeignPtr :: fp:ForeignPtr a

-> (PtrN a (fplen fp) -> IO b)

-> IO b

This is a rather interesting higher-order specification. Consider a call
withForeignPtr fp act. If the act requires a Ptr whose size exceeds
that of fp then LiquidHaskell will flag a (subtyping) error indicating
the overflow. If instead the act requires a buffer of size less than fp

then it is always safe to run the act on a larger buffer. For example,
the below variant of zero4 where we only set the first three bytes is
fine as the act, namely the function \p -> ..., can be typed with the
requirement that the buffer p has size 4, even though only 3 bytes are
actually touched.
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zero3 = do fp <- mallocForeignPtrBytes 4

withForeignPtr fp $ \p -> do

poke (p `plusPtr` 0) zero

poke (p `plusPtr` 1) zero

poke (p `plusPtr` 2) zero

return fp

where

zero = 0 :: Word8

To Refine Reads and Writes we specify that they can only be done
if the pointer refers to a non-empty (remaining) buffer. That is, we
define an alias:

type OkPtr a = {v:Ptr a | 0 < plen v}

that describes pointers referring to non-empty buffers (of strictly
positive plen), and then use the alias to refine:

peek :: OkPtr a -> IO a

poke :: OkPtr a -> a -> IO ()

In essence the above type says that no matter how arithmetic was
used to shift pointers around, when the actual dereference happens,
the size remaining after the pointer must be non-negative, so that a
byte can be safely read from or written to the underlying buffer.

To Refine the Shift operations, we simply check that the pointer
remains within the bounds of the buffer, and update the plen to
reflect the size remaining after the shift: 5 5 This signature precludes left or

backward shifts; for that there is an
analogous minusPtr which we elide for
simplicity.plusPtr :: p:Ptr a -> off:BNat (plen p) -> PtrN b (plen p - off)

using the alias BNat, defined as:

type BNat N = {v:Nat | v <= N}

6 6 Did you notice that we have strength-
ened the type of plusPtr to prevent
the pointer from wandering outside
the boundary of the buffer? We could
instead use a weaker requirement for
plusPtr that omits this requirement,
and instead have the error be flagged
when the pointer was used to read or
write memory.

Types Prevent Overflows Lets revisit the zero-fill example from
above to understand how the refinements help detect the error:
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exBad = do fp <- mallocForeignPtrBytes 4

withForeignPtr fp $ \p -> do

poke (p `plusPtr` 0) zero

poke (p `plusPtr` 1) zero

poke (p `plusPtr` 2) zero

poke (p `plusPtr` 5) zero -- LH complains

return fp

where

zero = 0 :: Word8

Lets read the tea leaves to understand the above error:

Error: Liquid Type Mismatch

Inferred type

VV : {VV : Int | VV == ?a && VV == 5}

not a subtype of Required type

VV : {VV : Int | VV <= plen p}

in Context

zero : {zero : Word8 | zero == ?b}

VV : {VV : Int | VV == ?a && VV == (5 : int)}

fp : {fp : ForeignPtr a | fplen fp == ?c && 0 <= fplen fp}

p : {p : Ptr a | fplen fp == plen p && ?c <= plen p && ?b <= plen p && zero <= plen p}

?a : {?a : Int | ?a == 5}

?c : {?c : Int | ?c == 4}

?b : {?b : Integer | ?b == 0}

The error says we’re bumping p up by VV == 5 using plusPtr but
the latter requires that bump-offset be within the size of the buffer
referred to by p, i.e. VV <= plen p. Indeed, in this context, we have:

p : {p : Ptr a | fplen fp == plen p && ?c <= plen p && ?b <= plen p && zero <= plen p}

fp : {fp : ForeignPtr a | fplen fp == ?c && 0 <= fplen fp}

that is, the size of p, namely plen p equals the size of fp, namely
fplen fp (thanks to the withForeignPtr call). The latter equals to ?c

which is 4 bytes. Thus, since the offset 5 is not less than the buffer
size 4, LiquidHaskell cannot prove that the call to plusPtr is safe,
hence the error.
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Assumptions vs Guarantees

At this point you ought to wonder: where is the code for peek, poke
or mallocForeignPtrBytes and so on? How can we be sure that the
types we assigned to them are in fact legitimate?

Frankly, we cannot as those functions are externally implemented
(in this case, in C), and hence, invisible to the otherwise all-seeing
eyes of LiquidHaskell. Thus, we are assuming or trusting that those
functions behave according to their types. Put another way, the types
for the low-level API are our specification for what low-level pointer
safety. We shall now guarantee that the higher level modules that
build upon this API in fact use the low-level function in a manner
consistent with this specification.

Assumptions are a Feature and not a bug, as they let us to verify
systems that use some modules for which we do not have the code.
Here, we can assume a boundary specification, and then guarantee that
the rest of the system is safe with respect to that specification. 7 7 If we so desire, we can also check

the boundary specifications at run-
time, but that is outside the scope of
LiquidHaskell.

ByteString API

Next, let’s see how the low-level API can be used to implement to
implement ByteStrings, in a way that lets us perform fast string
operations without opening the door to overflows.

A ByteString is implemented as a record of three fields:

data ByteString = BS {

bPtr :: ForeignPtr Word8

, bOff :: !Int

, bLen :: !Int

}

• bPtr is a pointer to a block of memory,

• bOff is the offset in the block where the string begins,

• bLen is the number of bytes from the offset that belong to the
string.

http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract
https://hackage.haskell.org/package/bytestring
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These entities are illustrated in Figure 11.2; the green portion
represents the actual contents of a particular ByteString. This rep-
resentation makes it possible to implement various operations like
computing prefixes and suffixes extremely quickly, simply by pointer
arithmetic.

Figure 11.2: Representing ByteStrings in
memory.

In a Legal ByteString the start (bOff) and end (bOff + bLen) offsets
lie inside the buffer referred to by the pointer bPtr. We can formalize
this invariant with a data definition that will then make it impossible
to create illegal ByteStrings:

{-@ data ByteString = BS {

bPtr :: ForeignPtr Word8

, bOff :: {v:Nat| v <= fplen bPtr}

, bLen :: {v:Nat| v + bOff <= fplen bPtr}

}

@-}

The refinements on bOff and bLen correspond exactly to the legality
requirements that the start and end of the ByteString be within the
block of memory referred to by bPtr.

For brevity let’s define an alias for ByteStrings of a given size:

{-@ type ByteStringN N = {v:ByteString | bLen v = N} @-}

Legal Bytestrings can be created by directly using the constructor,
as long as we pass in suitable offsets and lengths. For example,

{-@ good1 :: IO (ByteStringN 5) @-}

good1 = do fp <- mallocForeignPtrBytes 5

return (BS fp 0 5)

creates a valid ByteString of size 5; however we need not start at the
beginning of the block, or use up all the buffer, and can instead create
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ByteStrings whose length is less than the size of the allocated block,
as shown in good2 whose length is 2 while the allocated block has
size 5.

{-@ good2 :: IO (ByteStringN 2) @-}

good2 = do fp <- mallocForeignPtrBytes 5

return (BS fp 3 2)

Illegal Bytestrings are rejected by LiquidHaskell. For example,
bad1’s length is exceeds its buffer size, and is flagged as such:

bad1 = do fp <- mallocForeignPtrBytes 3

return (BS fp 0 10)

Similarly, bad2 does have 2 bytes but not if we start at the offset of 2:

bad2 = do fp <- mallocForeignPtrBytes 3

return (BS fp 2 2)

Exercise 11.1 (Legal ByteStrings). Modify the definitions of bad1 and bad2

so they are accepted by LiquidHaskell.

Measures are generated from Fields in the datatype defini-
tion. As GHC lets us use the fields as accessor functions, we can
refine the types of those functions to specify their behavior to Liq-
uidHaskell. For example, we can type the (automatically generated)
field-accessor function bLen so that it actually returns the exact size of
the ByteString argument.

{-@ bLen :: b:ByteString -> {v: Nat | v = bLen b} @-}

To Safely Create a ByteString the implementation defines a higher
order create function, that takes a size n and accepts a fill action,
and runs the action after allocating the pointer. After running the
action, the function tucks the pointer into and returns a ByteString

of size n.

{-@ create :: n:Nat -> (Ptr Word8 -> IO ()) -> ByteStringN n @-}

create n fill = unsafePerformIO $ do

fp <- mallocForeignPtrBytes n

withForeignPtr fp fill

return (BS fp 0 n)
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Exercise 11.2 (Create). ⋆ Why does LiquidHaskell reject the following
function that creates a ByteString corresponding to "GHC"?

bsGHC = create 3 $ \p -> do

poke (p `plusPtr` 0) (c2w 'G')

poke (p `plusPtr` 1) (c2w 'H')

poke (p `plusPtr` 2) (c2w 'C')

Hint: The function writes into 3 slots starting at p. How big should
plen p be to allow this? What type does LiquidHaskell infer for p

above? Does it meet the requirement? Which part of the specification
or implementation needs to be modified so that the relevant informa-
tion about p becomes available within the do-block above? Make sure
you figure out the above before proceeding.

To Pack a String into a ByteString we simply call create with the
appropriate fill action:8 8 The code uses create' which is just

create with the correct signature in case
you want to skip the previous exercise.
(But don’t!)

pack str = create' n $ \p -> go p xs

where

n = length str

xs = map c2w str

go p (x:xs) = poke p x >> go (plusPtr p 1) xs

go _ [] = return ()

Exercise 11.3 (Pack). We can compute the size of a ByteString by using
the function: Fix the specification for pack so that (it still typechecks!) and
furthermore, the following QuickCheck style property is proved.

{-@ prop_pack_length :: String -> TRUE @-}

prop_pack_length xs = bLen (pack xs) == length xs

Hint: Look at the type of length, and recall that len is a numeric
measure denoting the size of a list.

The magic of inference ensures that pack just works. Notice there
is a tricky little recursive loop go that is used to recursively fill in the
ByteString and actually, it has a rather subtle type signature that
LiquidHaskell is able to automatically infer.

Exercise 11.4 (Pack Invariant). Exercise 11.1. ⋆ Still, we’re here
to learn, so can you write down the type signature for the pLoop so that
the below variant of pack is accepted by LiquidHaskell (Do this without
cheating by peeping at the type inferred for go above!)
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packEx str = create' n $ \p -> pLoop p xs

where

n = length str

xs = map c2w str

{-@ pLoop :: (Storable a) => p:Ptr a -> xs:[a] -> IO () @-}

pLoop p (x:xs) = poke p x >> pLoop (plusPtr p 1) xs

pLoop _ [] = return ()

Hint: Remember that len xs denotes the size of the list xs.

Exercise 11.5 (Unsafe Take and Drop). The functions unsafeTake and
unsafeDrop respectively extract the prefix and suffix of a ByteString from
a given position. They are really fast since we only have to change the offsets.
But why does LiquidHaskell reject them? Can you fix the specifications so
that they are accepted?

{-@ unsafeTake :: n:Nat -> b:_ -> ByteStringN n @-}

unsafeTake n (BS x s _) = BS x s n

{-@ unsafeDrop :: n:Nat -> b:_ -> ByteStringN {bLen b - n} @-}

unsafeDrop n (BS x s l) = BS x (s + n) (l - n)

Hint: Under what conditions are the returned ByteStrings legal?

To Unpack a ByteString into a plain old String, we essentially run
pack in reverse, by walking over the pointer, and reading out the
characters one by one till we reach the end:

unpack :: ByteString -> String

unpack (BS _ _ 0) = []

unpack (BS ps s l) = unsafePerformIO

$ withForeignPtr ps

$ \p -> go (p `plusPtr` s) (l - 1) []

where

{-@ go :: p:_ -> n:_ -> acc:_ -> IO {v:_ | true } @-}

go p 0 acc = peekAt p 0 >>= \e -> return (w2c e : acc)

go p n acc = peekAt p n >>= \e -> go p (n-1) (w2c e : acc)

peekAt p n = peek (p `plusPtr` n)

Exercise 11.6 (Unpack). ⋆ Fix the specification for unpack so that the
below QuickCheck style property is proved by LiquidHaskell.
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{-@ prop_unpack_length :: ByteString -> TRUE @-}

prop_unpack_length b = bLen b == length (unpack b)

Hint: You will also have to fix the specification of the helper go. Can
you determine the output refinement should be (instead of just true?)
How big is the output list in terms of p, n and acc.

Application API

Finally, let’s revisit our potentially “bleeding” chop function to see
how the refined ByteString API can prevent errors. We require that
the prefix size n be less than the size of the input string s:

{-@ chop :: s:String -> n:BNat (len s) -> String @-}

chop s n = s'

where

b = pack s -- down to low-level

b' = unsafeTake n b -- grab n chars

s' = unpack b' -- up to high-level

Overflows are prevented by LiquidHaskell, as it rejects calls to
chop where the prefix size is too large which is what led to the over-
flow that spilled the contents of memory after the string (cf. Figure
11.1). In the code below, the first use of chop which defines ex6 is
accepted as 6 <= len ex but the second call is rejected as 30 > len

ex.

demo = [ex6, ex30]

where

ex = ['L','I','Q','U','I','D']

ex6 = chop ex 6 -- accepted by LH

ex30 = chop ex 30 -- rejected by LH

Fix the specification for chop so that the following property is
proved:

{-@ prop_chop_length :: String -> Nat -> TRUE @-}

prop_chop_length s n

| n <= length s = length (chop s n) == n

| otherwise = True
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Exercise 11.7 (Checked Chop). In the above, we know statically that the
string is longer than the prefix, but what if the string and prefix are obtained
dynamically, e.g. as inputs from the user? Fill in the implementation of ok

below to ensure that chop is called safely with user specified values:

safeChop :: String -> Int -> String

safeChop str n

| ok = chop str n

| otherwise = ""

where

ok = True

queryAndChop :: IO String

queryAndChop = do putStrLn "Give me a string:"

str <- getLine

putStrLn "Give me a number:"

ns <- getLine

let n = read ns :: Int

return $ safeChop str n

Nested ByteStrings

For a more in-depth example, let’s take a look at group, which trans-
forms strings like "foobaaar" into lists of strings like ["f","oo",

"b", "aaa", "r"]. The specification is that group should produce a

1. list of non-empty ByteStrings,

2. the sum of whose lengths equals that of the input string.

Non-empty ByteStrings are those whose length is non-zero:

{-@ predicate Null B = bLen B == 0 @-}

{-@ type ByteStringNE = {v:ByteString | not (Null v)} @-}

We can use these to enrich the API with a null check

{-@ null :: b:_ -> {v:Bool | v <=> Null b} @-}

null (BS _ _ l) = l == 0

This check is used to determine if it is safe to extract the head and
tail of the ByteString. we can use refinements to ensure the safety of
the operations and also track the sizes. 9 9 peekByteOff p i is equivalent to peek

(plusPtr p i).
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{-@ unsafeHead :: ByteStringNE -> Word8 @-}

unsafeHead (BS x s _) = unsafePerformIO $

withForeignPtr x $ \p ->

peekByteOff p s

{-@ unsafeTail :: b:ByteStringNE -> ByteStringN {bLen b -1} @-}

unsafeTail (BS ps s l) = BS ps (s + 1) (l - 1)

The Group‘ function recursively calls spanByte to carve off the next
group, and then returns the accumulated results:

{-@ group :: b:_ -> {v: [ByteStringNE] | bsLen v = bLen b} @-}

group xs

| null xs = []

| otherwise = let y = unsafeHead xs

(ys, zs) = spanByte y (unsafeTail xs)

in (y `cons` ys) : group zs

The first requirement, that the groups be non-empty is captured by
the fact that the output is a [ByteStringNE]. The second requirement,
that the sum of the lengths is preserved, is expressed by a writing a
numeric measure:

{-@ measure bsLen @-}

bsLen :: [ByteString] -> Int

bsLen [] = 0

bsLen (b:bs) = bLen b + bsLen bs

SpanByte does a lot of the heavy lifting. It uses low-level pointer
arithmetic to find the first position in the ByteString that is different
from the input character c and then splits the ByteString into a pair
comprising the prefix and suffix at that point. (If you filled in the
relevant type signatures above, the below code should typecheck
even after you delete the assume from the specification.)

{-@ assume spanByte :: Word8 -> b:ByteString -> ByteString2 b @-}

spanByte c ps@(BS x s ln)

= unsafePerformIO

$ withForeignPtr x $ \p ->

go (p `plusPtr` s) 0

where

go p i
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| i >= ln = return (ps, empty)

| otherwise = do c' <- peekByteOff p i

if c /= c'

then return (splitAt i)

else go p (i+1)

splitAt i = (unsafeTake i ps, unsafeDrop i ps)

LiquidHaskell infers that 0 <= i <= l and therefore that all of the
memory accesses are safe. Furthermore, due to the precise specifica-
tions given to unsafeTake and unsafeDrop, it is able to prove that the
output pair’s lengths add up to the size of the input ByteString.

{-@ type ByteString2 B

= {v:_ | bLen (fst v) + bLen (snd v) = bLen B} @-}

Recap: Types Against Overflows

In this chapter we saw a case study illustrating how measures and
refinements enable safe low-level pointer arithmetic in Haskell. The
take away messages are that we can:

1. compose larger systems from layers of smaller ones,

2. refine APIs for each layer, which can be used to

3. design and validate the layers above.

We saw this recipe in action by developing a low-level Pointer
API, using it to implement fast ByteStrings API, and then building
some higher-level functions on top of the ByteStrings.

The Trusted Computing Base in this approach includes exactly
those layers for which the code is not available, for example, because
they are implemented outside the language and accessed via the
FFI as with mallocForeignPtrBytes and peek and poke. In this case,
we can make progress by assuming the APIs hold for those layers
and verify the rest of the system with respect to that API. It is im-
portant to note that in the entire case study, it is only the above FFI
signatures that are trusted; the rest are all verified by LiquidHaskell.
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Case Study: AVL Trees

One of the most fundamental abstractions in computing is that of a
collection of values – names, numbers, records – into which we can
rapidly insert, delete and check for membership.

Trees offer an attractive means of implementing collections in
the immutable setting. We can order the values to ensure that each
operation takes time proportional to the path from the root to the
datum being operated upon. If we additionally keep the tree balanced
then each path is small (relative to the size of the collection), thereby
giving us an efficient implementation for collections.

As in real life

maintaining order and balance is rather easier said than done.
Often we must go through rather sophisticated gymnastics to ensure
everything is in its right place. Fortunately, LiquidHaskell can help.
Lets see a concrete example, that should be familiar from your intro-
ductory data structures class: the Georgy Adelson-Velsky and Landis’
or AVL Tree.

AVL Trees

An AVL tree is defined by the following Haskell datatype:1 1 This chapter is based on code by
Michael Beaumont.

data AVL a =

Leaf

| Node { key :: a -- value

, l :: AVL a -- left subtree

, r :: AVL a -- right subtree

http://en.wikipedia.org/wiki/AVL_tree
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, ah :: Int -- height

}

deriving (Show)

While the Haskell type signature describes any old binary tree, an
AVL tree like that shown in Figure 12.1 actually satisfies two crucial
invariants: it should be binary search ordered and balanced.

Figure 12.1: An AVL tree is an ordered,
height-balanced tree.

A Binary Search Ordered tree is one where at each Node, the
values of the left and right subtrees are strictly less and greater
than the values at the Node. In the tree in Figure 12.1 the root has
value 50 while its left and right subtrees have values in the range
9-23 and 54-76 respectively. This holds at all nodes, not just the root.
For example, the node 12 has left and right children strictly less and
greater than 12.

A Balanced tree is one where at each node, the heights of the left
and right subtrees differ by at most 1. In Figure 12.1, at the root, the
heights of the left and right subtrees are the same, but at the node 72

the left subtree has height 2 which is one more then the right subtree.

The Invariants Lead To Fast Operations.

Order ensures that there is at most a single path of left and right

moves from the root at which an element can be found; balance
ensures that each such path in the tree is of size O(log n) where n is
the numbers of nodes. Thus, together they ensure that the collection
operations are efficient: they take time logarithmic in the size of the
collection.

Specifying AVL Trees

The tricky bit is to ensure order and balance. Before we can ensure
anything, let’s tell LiquidHaskell what we mean by these terms, by
defining legal or valid AVL trees.

To Specify Order we just define two aliases AVLL and AVLR – read
AVL-left and AVL-right – for trees whose values are strictly less than
and greater than some value X:



case study: avl trees 131

-- | Trees with value less than X

{-@ type AVLL a X = AVL {v:a | v < X} @-}

-- | Trees with value greater than X

{-@ type AVLR a X = AVL {v:a | X < v} @-}

The Real Height of a tree is defined recursively as 0 for Leafs
and one more than the larger of left and right subtrees for Nodes.
Note that we cannot simply use the ah field because that’s just some
arbitrary Int – there is nothing to prevent a buggy implementation
from just filling that field with 0 everywhere. In short, we need the
ground truth: a measure that computes the actual height of a tree. 2 2 FIXME The inline pragma indicates

that the Haskell functions can be
directly lifted into and used inside the
refinement logic and measures.{-@ measure realHeight @-}

realHeight :: AVL a -> Int

realHeight Leaf = 0

realHeight (Node _ l r _) = nodeHeight l r

{-@ inline nodeHeight @-}

nodeHeight l r = 1 + max hl hr

where

hl = realHeight l

hr = realHeight r

{-@ inline max @-}

max :: Int -> Int -> Int

max x y = if x > y then x else y

A Reality Check predicate ensures that a value v is indeed the real
height of a node with subtrees l and r:

{-@ inline isReal @-}

isReal v l r = v == nodeHeight l r

A Node is n-Balanced if its left and right subtrees have a (real)
height difference of at most n. We can specify this requirement as a
predicate isBal l r n

{-@ inline isBal @-}

isBal l r n = 0 - n <= d && d <= n

where

d = realHeight l - realHeight r
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A Legal AVL Tree can now be defined via the following refined data
type, which states that each Node is 1-balanced, and that the saved
height field is indeed the real height:

{-@ data AVL a = Leaf

| Node { key :: a

, l :: AVLL a key

, r :: {v:AVLR a key | isBal l v 1}

, ah :: {v:Nat | isReal v l r}

} @-}

Smart Constructors

Lets use the type to construct a few small trees which will also be
handy in a general collection API. First, let’s write an alias for trees of
a given height:

-- | Trees of height N

{-@ type AVLN a N = {v: AVL a | realHeight v = N} @-}

-- | Trees of height equal to that of another T

{-@ type AVLT a T = AVLN a {realHeight T} @-}

An Empty collection is represented by a Leaf, which has height 0:

{-@ empty :: AVLN a 0 @-}

empty = Leaf

Exercise 12.1 (Singleton). Consider the function singleton that builds an
AVL tree from a single element. Fix the code below so that it is accepted by
LiquidHaskell.

{-@ singleton :: a -> AVLN a 1 @-}

singleton x = Node x empty empty 0

As you can imagine, it can be quite tedious to keep the saved
height field ah in sync with the real height. In general in such situa-
tions, which arose also with lazy queues, the right move is to eschew
the data constructor and instead use a smart constructor that will fill
in the appropriate values correctly. 3 3 Why bother to save the height any-

way? Why not just recompute it in-
stead?

The Smart Constructor node takes as input the node’s value x,
left and right subtrees l and r and returns a tree by filling in the right
value for the height field.
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{-@ mkNode :: a -> l:AVL a -> r:AVL a

-> AVLN a {nodeHeight l r}

@-}

mkNode v l r = Node v l r h

where

h = 1 + max hl hr

hl = getHeight l

hr = getHeight r

Exercise 12.2 (Constructor). Unfortunately, LiquidHaskell rejects the
above smart constructor node. Can you explain why? Can you fix the code
(implementation or specification) so that the function is accepted?

Hint: Think about the (refined) type of the actual constructor Node,
and the properties it requires and ensures.

Inserting Elements

Next, let’s turn our attention to the problem of adding elements to an
AVL tree. The basic strategy is this:

1. Find the appropriate location (per ordering) to add the value,

2. Replace the Leaf at that location with the singleton value.

If you prefer the spare precision of code to the informality of English,
here is a first stab at implementing insertion: 4 4 node is a fixed variant of the smart

constructor mkNode. Do the exercise
without looking at it.

{-@ insert0 :: (Ord a) => a -> AVL a -> AVL a @-}

insert0 y t@(Node x l r _)

| y < x = node x (insert0 y l) r

| x < y = node x l (insert0 y r)

| otherwise = t

insert0 y Leaf = singleton y

Unfortunately insert0 does not work. If you did the exercise
above, you can replace it with mkNode and you will see that the above
function is rejected by LiquidHaskell. The error message would es-
sentially say that at the calls to the smart constructor, the arguments
violate the balance requirement.
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Insertion Increases The Height of a sub-tree, making it too large
relative to its sibling. For example, consider the tree t0 defined as:

ghci> let t0 = Node { key = 'a'

, l = Leaf

, r = Node {key = 'd'

, l = Leaf

, r = Leaf

, ah = 1 }

, ah = 2}

If we use insert0 to add the key 'e' (which goes after 'd') then
we end up with the result:

ghci> insert0 'e' t0

Node { key = 'a'

, l = Leaf

, r = Node { key = 'd'

, l = Leaf

, r = Node { key = 'e'

, l = Leaf

, r = Leaf

, ah = 1 }

, ah = 2 }

, ah = 3}

Figure 12.2: Naive insertion breaks
balancedness

In the above, illustrated in Figure 12.2 the value 'e' is inserted into
the valid tree t0; it is inserted using insR0, into the right subtree of t0
which already has height 1 and causes its height to go up to 2 which
is too large relative to the empty left subtree of height 0.

LiquidHaskell catches the imbalance by rejecting insert0.
The new value y is inserted into the right subtree r, which (may
already be bigger than the left by a factor of 1). As insert can return
a tree with arbitrary height, possibly much larger than l and hence,
LiquidHaskell rejects the call to the constructor node as the balance
requirement does not hold.

Two lessons can be drawn from the above exercise. First, insert may
increase the height of a tree by at most 1. So, second, we need a way
to rebalance sibling trees where one has height 2 more than the other.
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Rebalancing Trees

The brilliant insight of Adelson-Velsky and Landis was that we can,
in fact, perform such a rebalancing with a clever bit of gardening.
Suppose we have inserted a value into the left subtree l to obtain a
new tree l' (the right case is symmetric.)

The relative heights of l' and r fall under one of three cases:

• (RightBig) r is two more than l',

• (LeftBig) l' is two more than r, and otherwise

• (NoBig) l' and r are within a factor of 1,

We can specify these cases as follows.

{-@ inline leftBig @-}

leftBig l r = diff l r == 2

{-@ inline rightBig @-}

rightBig l r = diff r l == 2

{-@ inline diff @-}

diff s t = getHeight s - getHeight t

the function getHeight accesses the saved height field.

{-@ measure getHeight @-}

getHeight Leaf = 0

getHeight (Node _ _ _ n) = n

In insL, the RightBig case cannot arise as l' is at least as big as l,
which was within a factor of 1 of r in the valid input tree t. In NoBig,
we can safely link l' and r with the smart constructor as they satisfy
the balance requirements. The LeftBig case is the tricky one: we need
a way to shuffle elements from the left subtree over to the right side.

What is a LeftBig tree? Lets split into the possible cases for l',
immediately ruling out the empty tree because its height is 0 which
cannot be 2 larger than any other tree.

• (NoHeavy) the left and right subtrees of l' have the same height,
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• (LeftHeavy) the left subtree of l' is bigger than the right,

• (RightHeavy) the right subtree of l' is bigger than the left.

The Balance Factor of a tree can be used to make the above cases
precise. Note that while the getHeight function returns the saved
height (for efficiency), thanks to the invariants, we know it is in fact
equal to the realHeight of the given tree.

{-@ measure balFac @-}

balFac Leaf = 0

balFac (Node _ l r _) = getHeight l - getHeight r

Heaviness can be encoded by testing the balance factor:

{-@ inline leftHeavy @-}

leftHeavy t = balFac t > 0

{-@ inline rightHeavy @-}

rightHeavy t = balFac t < 0

{-@ inline noHeavy @-}

noHeavy t = balFac t == 0

Adelson-Velsky and Landis observed that once you’ve drilled
down into these three cases, the shuffling suggests itself.

Figure 12.3: Rotating when in the
LeftBig, NoHeavy case.

In the NoHeavy case, illustrated in Figure 12.3, the subtrees ll

and lr have the same height which is one more than that of r. Hence,
we can link up lr and r and link the result with l. Here’s how you
would implement the rotation. Note how the preconditions capture
the exact case we’re in: the left subtree is NoHeavy and the right
subtree is smaller than the left by 2. Finally, the output type captures
the exact height of the result, relative to the input subtrees.



case study: avl trees 137

{-@ balL0 :: x:a

-> l:{AVLL a x | noHeavy l}

-> r:{AVLR a x | leftBig l r}

-> AVLN a {realHeight l + 1 }

@-}

balL0 v (Node lv ll lr _) r = node lv ll (node v lr r)

Figure 12.4: Rotating when in the
LeftBig, LeftHeavy case.

In the LeftHeavy case, illustrated in Figure 12.4, the subtree ll is
larger than lr; hence lr has the same height as r, and again we can
link up lr and r and link the result with l. As in the NoHeavy case,
the input types capture the exact case, and the output the height of
the resulting tree.

{-@ balLL :: x:a

-> l:{AVLL a x | leftHeavy l}

-> r:{AVLR a x | leftBig l r}

-> AVLT a l

@-}

balLL v (Node lv ll lr _) r = node lv ll (node v lr r)

Figure 12.5: Rotating when in the
LeftBig, RightHeavy case.

In the RightHeavy case, illustrated in Figure 12.5, the subtree lr

is larger than ll. We cannot directly link it with r as the result would
again be too large. Hence, we split it further into its own subtrees
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lrl and lrr and link the latter with r. Again, the types capture the
requirements and guarantees of the rotation.

{-@ balLR :: x:a

-> l:{AVLL a x | rightHeavy l}

-> r:{AVLR a x | leftBig l r}

-> AVLT a l

@-}

balLR v (Node lv ll (Node lrv lrl lrr _) _) r

= node lrv (node lv ll lrl) (node v lrr r)

The RightBig cases are symmetric to the above cases where the left
subtree is the larger one.

Exercise 12.3 (RightBig, NoHeavy). Fix the implementation of balR0 so
that it implements the given type.

{-@ balR0 :: x:a

-> l: AVLL a x

-> r: {AVLR a x | rightBig l r && noHeavy r}

-> AVLN a {realHeight r + 1}

@-}

balR0 v l r = undefined

Exercise 12.4 (RightBig, RightHeavy). Fix the implementation of balRR so
that it implements the given type.

{-@ balRR :: x:a

-> l: AVLL a x

-> r:{AVLR a x | rightBig l r && rightHeavy r}

-> AVLT a r

@-}

balRR v l r = undefined

Exercise 12.5 (RightBig, LeftHeavy). Fix the implementation of balRL so
that it implements the given type.

{-@ balRL :: x:a

-> l: AVLL a x

-> r:{AVLR a x | rightBig l r && leftHeavy r}
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-> AVLT a r

@-}

balRL v l r = undefined

To Correctly Insert an element, we recursively add it to the left or
right subtree as appropriate and then determine which of the above
cases hold in order to call the corresponding rebalance function which
restores the invariants.

{-@ insert :: a -> s:AVL a -> {t: AVL a | eqOrUp s t} @-}

insert y Leaf = singleton y

insert y t@(Node x _ _ _)

| y < x = insL y t

| y > x = insR y t

| otherwise = t

The refinement, eqOrUp says that the height of t is the same as s or
goes up by at most 1.

{-@ inline eqOrUp @-}

eqOrUp s t = d == 0 || d == 1

where

d = diff t s

The hard work happens inside insL and insR. Here’s the first; it
simply inserts into the left subtree to get l' and then determines
which rotation to apply.

{-@ insL :: x:a

-> t:{AVL a | x < key t && 0 < realHeight t}

-> {v: AVL a | eqOrUp t v}

@-}

insL a (Node v l r _)

| isLeftBig && leftHeavy l' = balLL v l' r

| isLeftBig && rightHeavy l' = balLR v l' r

| isLeftBig = balL0 v l' r

| otherwise = node v l' r

where

isLeftBig = leftBig l' r

l' = insert a l

Exercise 12.6 (InsertRight). ⋆ The code for insR is symmetric. To make
sure you’re following along, why don’t you fill it in?
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{-@ insR :: x:a

-> t:{AVL a | key t < x && 0 < realHeight t }

-> {v: AVL a | eqOrUp t v}

@-}

insR = undefined

Refactoring Rebalance

Next, let’s write a function to delete an element from a tree. In
general, we can apply the same strategy as insert:

1. remove the element without worrying about heights,

2. observe that deleting can decrease the height by at most 1,

3. perform a rotation to fix the imbalance caused by the decrease.

We painted ourselves into a corner with insert: the code
for actually inserting an element is intermingled with the code for
determining and performing the rotation. That is, see how the code
that determines which rotation to apply – leftBig, leftHeavy, etc. –
is inside the insL which does the insertion as well. This is correct, but
it means we would have to repeat the case analysis when deleting a
value, which is unfortunate.

Instead let’s refactor the rebalancing code into a separate
function, that can be used by both insert and delete. It looks like
this:

{-@ bal :: x:a

-> l:AVLL a x

-> r:{AVLR a x | isBal l r 2}

-> {t:AVL a | reBal l r t}

@-}

bal v l r

| isLeftBig && leftHeavy l = balLL v l r

| isLeftBig && rightHeavy l = balLR v l r

| isLeftBig = balL0 v l r

| isRightBig && leftHeavy r = balRL v l r

| isRightBig && rightHeavy r = balRR v l r

| isRightBig = balR0 v l r

| otherwise = node v l r

where
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isLeftBig = leftBig l r

isRightBig = rightBig l r

The bal function is a combination of the case-splits and rotation
calls made by insL (and ahem, insR); it takes as input a value x and
valid left and right subtrees for x whose heights are off by at most 2
because as we will have created them by inserting or deleting a value
from a sibling whose height was at most 1 away. The bal function
returns a valid AVL tree, whose height is constrained to satisfy the
predicate reBal l r t, which says:

• (bigHt) The height of t is the same or one bigger than the larger of
l and r, and

• (balHt) If l and r were already balanced (i.e. within 1) then the
height of t is exactly equal to that of a tree built by directly linking
l and r.

{-@ inline reBal @-}

reBal l r t = bigHt l r t && balHt l r t

{-@ inline balHt @-}

balHt l r t = not (isBal l r 1) || isReal (realHeight t) l r

{-@ inline bigHt @-}

bigHt l r t = lBig && rBig

where

lBig = not (hl >= hr) || (eqOrUp l t)

rBig = (hl >= hr) || (eqOrUp r t)

hl = realHeight l

hr = realHeight r

Insert can now be written very simply as the following function that
recursively inserts into the appropriate subtree and then calls bal to
fix any imbalance:

{-@ insert' :: a -> s:AVL a -> {t: AVL a | eqOrUp s t} @-}

insert' a t@(Node v l r n)

| a < v = bal v (insert' a l) r

| a > v = bal v l (insert' a r)

| otherwise = t

insert' a Leaf = singleton a
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Deleting Elements

Now we can write the delete function in a manner similar to insert:
the easy cases are the recursive ones; here we just delete from the
subtree and summon bal to clean up. Notice that the height of the
output t is at most 1 less than that of the input s.

{-@ delete :: a -> s:AVL a -> {t:AVL a | eqOrDn s t} @-}

delete y (Node x l r _)

| y < x = bal x (delete y l) r

| x < y = bal x l (delete y r)

| otherwise = merge x l r

delete _ Leaf = Leaf

{-@ inline eqOrDn @-}

eqOrDn s t = eqOrUp t s

The tricky case is when we actually find the element that is to
be removed. Here, we call merge to link up the two subtrees l and r

after hoisting the smallest element from the right tree r as the new
root which replaces the deleted element x.

{-@ merge :: x:a -> l:AVLL a x -> r:{AVLR a x | isBal l r 1}

-> {t:AVL a | bigHt l r t}

@-}

merge _ Leaf r = r

merge _ l Leaf = l

merge x l r = bal y l r'

where

(y, r') = getMin r

getMin recursively finds the smallest (i.e. leftmost) value in a tree,
and returns the value and the remainder tree. The height of each
remainder l' may be lower than l (by at most 1.) Hence, we use bal

to restore the invariants when linking against the corresponding right
subtree r.

getMin (Node x Leaf r _) = (x, r)

getMin (Node x l r _) = (x', bal x l' r)

where

(x', l') = getMin l
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Functional Correctness

We just saw how to implement some tricky data structure gymnastics.
Fortunately, with LiquidHaskell as a safety net we can be sure to
have gotten all the rotation cases right and to have preserved the
invariants crucial for efficiency and correctness. However, there is
nothing in the types above that captures “functional correctness”,
which, in this case, means that the operations actually implement
a collection or set API, for example, as described here. Lets use the
techniques from that chapter to precisely specify and verify that our
AVL operations indeed implement sets correctly, by:

1. Defining the set of elements in a tree,

2. Specifying the desired semantics of operations via types,

3. Verifying the implementation. 5 5 By adding ghost operations, if needed.

We’ve done this once before already, so this is a good exercise to
solidify your understanding of that material.

The Elements of an AVL tree can be described via a measure defined
as follows:

{-@ measure elems @-}

elems :: (Ord a) => AVL a -> S.Set a

elems (Node x l r _) = (S.singleton x) `S.union`

(elems l) `S.union`

(elems r)

elems Leaf = S.empty

Let us use the above measure to specify and verify that our AVL library
actually implements a Set or collection API.

Exercise 12.7 (Membership). Complete the implementation of the imple-
mentation of member that checks if an element is in an AVL tree:

-- FIXME https://github.com/ucsd-progsys/liquidhaskell/issues/332

{-@ member :: (Ord a) => x:a -> t:AVL a -> {v: Bool | v <=> hasElem x t} @-}

member x t = undefined

{-@ type BoolP P = {v:Bool | v <=> P} @-}

{-@ inline hasElem @-}

hasElem x t = True

-- FIXME hasElem x t = S.member x (elems t)
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Exercise 12.8 (Insertion). Modify insert' to obtain a function insertAPI

that states that the output tree contains the newly inserted element (in
addition to the old elements):

{-@ insertAPI :: (Ord a) => a -> s:AVL a -> {t:AVL a | addElem x s t} @-}

insertAPI x s = insert' x s

{-@ inline addElem @-}

addElem :: Ord a => a -> AVL a -> AVL a -> Bool

addElem x s t = True

-- FIXME addElem x s t = (elems t) == (elems s) `S.union` (S.singleton x)

Exercise 12.9 (Insertion). Modify delete to obtain a function deleteAPI

that states that the output tree contains the old elements minus the removed
element:

{-@ deleteAPI :: (Ord a) => a -> s:AVL a -> {t: AVL a | delElem x s t} @-}

deleteAPI x s = delete x s

{-@ inline delElem @-}

delElem :: Ord a => a -> AVL a -> AVL a -> Bool

delElem x s t = True

-- FIXME delElem x s t = (elems t) == (elems s) `S.difference` (S.singleton x)
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