

 
CSE 130 : Fall 2015  

  

Programming Languages 

Ranjit Jhala
UC San Diego

Lecture 1: Hello, World!

A Programming Language
• Two variables

– x, y

• Three operations
– x++
– x--
– (x=0)? L1:L2;

L1: x++;
 y--;
 (y=0)?L2:L1
L2: …

Fact: This is “equivalent to” to every PL!

Good luck writing quicksort
 … or Windows, Google, Spotify!

So why study PL ?

“A different language is a
different vision of life”

 - Federico Fellini

So why study PL ?

Programming language

shapes
Programming thought

So why study PL ?

Language affects how:
• Ideas are expressed
• Computation is expressed

Course Goals

“Free your mind”
-Morpheus

Learn New Languages/Constructs

New ways to:
- describe
- organize
- think about
computation

Goal: Enable you to Program

• Readable
• Correct
• Extendable
• Modifiable
• Reusable

Learn How To Learn

Goal: How to learn new PLs

No Java (C#) 15 (10) years ago
AJAX? Python? Ruby? Erlang? F#?...

Learn the anatomy of a PL
• Fundamental building blocks
• Different guises in different PLs

Re-learn the PLs you already know

To Design New Languages

Goal: How to design new PLs
…“who, me ?”

Buried in every extensible system is a PL
• Emacs, Android: Lisp
• Word, Powerpoint: Macros, VBScript
• Unreal: UnrealScript (Game Scripting)
• Facebook: FBML, FBJS
• SQL, Renderman, LaTeX, XML …

Choose Right Language

Enables you to choose right PL

“…but isn’t that decided by
• libraries,
• standards,
• and my boss ?”
Yes.

My goal: educate tomorrow’s tech leaders
& bosses, so you’ll make informed choices

Speaking of Right and Wrong...

Imperative
Programming

x = x+1

WTF?
x = x+1

Imperative = Mutation

Imperative = Mutation

Bad
!

Don’t take my word for it

John Carmack
Creator of FPS: Doom, Quake,...

Don’t take my word for it
Tim Sweeney (Epic, Creator of UNREAL)

“In a concurrent world,
imperative is the wrong default”

Functional
Programming

Functional Programming ?

No Assignment.
No Mutation.

No Loops.

OMG! Who uses FP?!

So, Who Uses FP ?

MapReduce

So, Who Uses FP ?

Linq, F#

So, Who Uses FP ?

Erlang

So, Who Uses FP ?

Scala

So, Who Uses FP ?

Wall Street
(all of the

above)

So, Who Uses FP ?

...CSE 130

Course Mechanics

Mechanics

http://ucsd-progsys.github.io/cse130/

Nothing printed, everything on Webpage!

Peer Instruction (ish)

Peer Instruction/Clickers
• Make class interactive

– Help YOU and ME understand whats tricky

• Clickers Not Optional
– Cheap ones are fine
– 5% of your grade
– Respond to 75% questions

• Seating in groups (links on Piazza)

• Bring laptop if you have one

In Class Exercises
1. Solo Vote: Think for yourself, select answer

2. Discuss: Analyze Problem in Groups
+ Reach consensus
+ Have questions, raise your hand!

3. Group Vote: Everyone in group votes
+ Must have same vote to get points

3. Class Discuss: Everyone in group votes
• What was easy/hard?

Requirements and Grading
• The good news: No Homework

• In-Class Exercises: 5%
• Midterm: 30%
• Programming Assignments (7-8): 30%
• Final: 35%

Grading on a curve. Two hints/rumors:
1. Lot of work
2. Don’t worry (too much) about grade

No Recommended Text

• Online lecture notes

• Resources posted on webpage

• Pay attention to lecture and section!

• Do assignments yourself!

Suggested Homeworks

• On webpage after Thursday lecture

• Based on lectures, section of previous Tue, Thu

• Recommended, ungraded, HW problems are
sample exam questions

• Webpage has first samples already

Weekly Programming Assignments
Schedule up on webpage

Due on Friday 5 PM

Deadline Extension:
– Four “late days”, used as “whole unit”
– 5 mins late = 1 late day
– Plan ahead, no other extensions

Plan

1.FP, Ocaml, 4 weeks
2.OO, Scala, 4 weeks
3.Logic, Prolog, 1 week

Weekly Programming Assignments

 Unfamiliar languages
+ Unfamiliar environments

Start Early!

Scoring = Style + Test suite

Weekly Programming Assignments

No Compile, No Score

Forget Java, C, C++ …
… other 20th century PLs

Weekly Programming Assignments

Don’t complain
… that Ocaml is hard
… that Ocaml is @!%@#

It is not.

Immerse yourself in new language

It is not.

Free

Immerse yourself in new language

your mind.

Word from our sponsor …
• Programming Assignments done ALONE

• We use plagiarism detection software
– I am an expert
– Have code from all previous classes
– MOSS is fantastic, plagiarize at your own risk

• Zero Tolerance
– offenders punished ruthlessly

• Please see academic integrity statement

To Ask Me Questions?

Say hello to OCaml
void sort(int arr[], int beg, int end){
 if (end > beg + 1){
 int piv = arr[beg];
 int l = beg + 1;
 int r = end;
 while (l != r-1){
 if(arr[l] <= piv)
 l++;
 else
 swap(&arr[l], &arr[r--]);
 }
 if(arr[l]<=piv && arr[r]<=piv)
 l=r+1;
 else if(arr[l]<=piv && arr[r]>piv)
 {l++; r--;}
 else if (arr[l]>piv && arr[r]<=piv)
 swap(&arr[l++], &arr[r--]);
 else
 r=l-1;
 swap(&arr[r--], &arr[beg]);
 sort(arr, beg, r);
 sort(arr, l, end);
 }
}

Quicksort in C

Quicksort in Ocaml

let rec sort xs =
 match xs with [] -> []
 |(h::t) ->
 let(l,r)= List.partition ((<=) h) t in
 (sort l)@h::(sort r)

Why readability matters…

sort=:(($:@(<#[),(=#[),$:@(>#[))({~ ?@#))^: (1:<#)

Quicksort in J

Say hello to OCaml

Quicksort in OCaml

 let rec sort xs =
 match xs with
 | [] -> []
 | h::t ->
 let (l,r)= List.partition ((<=) h) t in
 (sort l)@h::(sort r)

Plan (next 4 weeks)

1. Fast forward
• Rapid introduction to whats in ML

2. Rewind

3. Slow motion
• Go over the pieces individually

ML: History, Variants
“Meta Language”
Designed by Robin Milner
To manipulate theorems & proofs

Several dialects:
• Standard ML (SML)

– Original syntax
• Objective Caml: (Ocaml)

– “The PL for the discerning hacker”
– State-of-the-art, extensive library, tool, user support

• F# (Ocaml+.NET) released in Visual Studio

ML’s holy trinity

• Everything is an expression
• Everything has a value
• Everything has a type

Expression Value

Type

Interacting with ML
“Read-Eval-Print” Loop

Repeat:
1. System reads expression e
2. System evaluates e to get value v
3. System prints value v and type t

What are these expressions, values and types ?

Base type: Integers

Complex expressions using “operators”:(why the quotes ?)

• +, -, *
• div, mod

2 2

int

2+2 4

2 * (9+10) 38

2 * (9+10) -12 26

Base type: Strings

Complex expressions using “operators”:(why the quotes ?)

• Concatenation ^

“ab” “ab”

string

“ab” ^ “xy” “abxy”

Base type: Booleans

Complex expressions using “operators”:
• “Relations”: = , <, <=, >=
• &&, ||, not

true true

bool

false false

1 < 2 true

“aa” = “pq” false

(“aa” = “pq”) && (1<2) false
(“aa” = “aa”) && (1<2) true

Type Errors

Untypable expression is rejected
• No casting, No coercing
• Fancy algorithm to catch errors
• ML’s single most powerful feature (why ?)

(2+3) || (“a” = “b”)

(2 + “a”)

“pq” ^ 9

Complex types: Product (tuples)

(2+2 , 7>8); (4,false)

int * bool

Complex types: Product (tuples)

(9-3,“ab”^“cd”,(2+2 ,7>8)) (6, “abcd”,(4,false))

(int * string * (int * bool))

• Triples,…
• Nesting:

– Everything is an expression
– Nest tuples in tuples

Complex types: Lists
[]; [] ’a list

• Unbounded size
• Can have lists of anything (e.g. lists of lists)
• but …

[1;2;3]; [1;2;3] int list

[“a”;“b”; “c”^“d”]; [“a”;“b”; “cd”] string list

[1+1;2+2;3+3;4+4]; [2;4;6;8] int list

[(1,“a”^“b”);(3+4,“c”)]; [(1,“ab”);(7,“c”)] (int*string) list

[[1];[2;3];[4;5;6]]; (int list) list[[1];[2;3];[4;5;6]];

Complex types: Lists

All elements must have same type

[1; “pq”];

Complex types: Lists
List operator “Cons”

[1] int list

1::[2]; [1;2] int list

1::[“b”; “cd”];

“a”::[“b”;“c”]; [“a”;“b”;“c”] string list

1::[];

::

Can only “cons” element to a list of same type

Complex types: Lists

List operator “Append”

int list

[“a”]@[“b”]; [“a”;“b”] string list

1 @ [2;3];

[]@[1]; [1] string list

[1;2]@[3;4;5];

@

Can only append two lists

[1;2;3;4;5]

[1] @ [“a”;“b”];… of the same type

Complex types: Lists

List operator “head”

int

hd ([“a”]@[“b”]); “a” string

hd [];

hd [1;2];

hd

Only take the head a nonempty list

1

Complex types: Lists

List operator “tail”

int list

tl ([“a”]@[“b”]); [“b”] string list

tl [];

tl [1;2;3];

tl

Only take the tail of nonempty list

[2;3]

Recap: Tuples vs. Lists ?
What’s the difference ?
• Tuples:

– Different types, but fixed number:

• pair = 2 elts

• triple = 3 elts

• Lists:
– Same type, unbounded number:

(3, “abcd”) (int * string)

(3, “abcd”,(3.5,4.2)) (int * string * (float* float))

[3;4;5;6;7] int list

So far, a fancy calculator…

… what do we need next ?

