CSE 130 : Fall 2015

Programming Languages

Lecture 1: Hello, World!

Ranjit Jhala
UC San Diego

A Programming Language So why study PL ?

e Two variables

~x, ¥ Ll: x++;
€€ . .
. Three operations y==; A different language is a
- ox =) sz e L different vision of life”
- X-- L2: ..

L (x=0)? L1:12;: - Federico Fellini

Fact: This is “equivalent to” to every PL!

Good luck writing quicksort
... or Windows, Google, Spotify!

So why study PL ?

Programming language
shapes
Programming thought

Course Goals

®s “Free your mind”
-Morpheus

So why study PL ?

Language affects how:
* |deas are expressed
» Computation is expressed

Learn New Languages/Constructs

New ways to:
- describe
- organize
- think about
computation

Goal: Enable you to Program

e Readable

e Correct

e Extendable
« Modifiable
e Reusable

Goal: How to learn new PLs

No Java (C#) 15 (10) years ago
AJAX? Python? Ruby? Erlang? F#:...

Learn the anatomy of a PL
» Fundamental building blocks
« Different guises in different PLs

Re-learn the PLs you already know

To Desigh New Languages

Goal: How to design new PLs

“who, me ?”

Buried in every extensible system is a PL
« Emacs, Android: Lisp

» Word, Powerpoint: Macros, VBScript

e Unreal: UnrealScript (Game Scripting)
e Facebook: FBML, FBJS

e SQL, Renderman, LaTeX, XML ...

Enables you to choose right PL

“...but isn’t that decided by

Choose Right Language

. libraries, ﬂ
e standards S

’ eaking of Richt and Wrone...
e and my boss ?” e ‘ P : 2 =

Yes.

My goal: educate tomorrow’s tech leaders
& bosses, so you’ll make informed choices

Imperative
Programming

X = X+1

Imperative = Mutation

Don’t take my word for it

John Carmack
Creator of FPS: Doom, Quake,...

Imperative = Mutation <

,s" Jovhn qumack ¥ Follow A&~

‘ ID_AA_Carmack
\ I am starting to remove op= operator overloads to
o discourage variable mutation.

% <~ Reply 13 Retweeted W Favorite

Don’t take my word for it

Tim Sweeney (Epic, Creator of UNREAL)

“In a concurrent world,

imperative is the wrong default” Fu nCtional
Programming

Ll F

C GEARS o-WAR

Functional Programming ?

No Assignment.
No Mutation.
No Loops.

OMG! Who uses FP?!

So, Who Uses FP ? So, Who Uses FP ?

GO \ /gle

MapReduce

So, Who Uses FP ? So, Who Uses FP ?

Erlang Scala

So, Who Uses FP ? So, Who Uses FP ?

Wall Street

(all of the ...CSE 130

above)

Mechanics

Course Mechanics http://ucsd-progsys.github.io/cse130/

Nothing printed, everything on Webpage!

Peer Instruction/Clickers

e Make class interactive
- Help YOU and ME understand whats tricky

Peer Instruction (ish) - ®lckers tot Optional

- Cheap ones are fine
- 5% of your grade
- Respond to 75% questions

» Seating in groups (links on Piazza)

 Bring laptop if you have one

In Class Exercises

1. Solo Vote: Think for yourself, select answer
2. Discuss: Analyze Problem in Groups

+ Reach consensus

+ Have questions, raise your hand!

3. Group Vote: Everyone in group votes
+ Must have same vote to get points

3. Class Discuss: Everyone in group votes
* What was easy/hard?

No Recommended Text

e Online lecture notes
e Resources posted on webpage
e Pay attention to lecture and section!

e Do assignments yourself!

Requirements and Grading

« The good news: No Homework

e In-Class Exercises: 5%
e Midterm: 30%
e Programming Assignments (7-8): 30%
e Final: 35%

Grading on a curve. Two hints/rumors:
1. Lot of work
2. Don’t worry (too much) about grade

Suggested Homeworks

On webpage after Thursday lecture

« Based on lectures, section of previous Tue, Thu

e Recommended, ungraded, HW problems are
sample exam questions

« Webpage has first samples already

Weekly Programming Assignments

Schedule up on webpage

Due on Friday 5 PM

Deadline Extension:
Four “late days”, used as “whole unit”
5 mins late = 1 late day
Plan ahead, no other extensions

Weekly Programming Assignments

Unfamiliar languages
+ Unfamiliar environments

Start Early!

Plan

1.FP, Ocaml, 4 weeks
2.00, Scala, 4 weeks
3.Logic, Prolog, 1 week

Weekly Programming Assignments

Scoring = Style + Test suite

No Compile, No Score

Weekly Programming Assignments Immerse yourself in new language

- Forget Java, C, C++ ...

nr ... other 20t century PLs It is not

Don’t complain
... that Ocaml is hard
... that Ocaml is @!%@#

Immerse yourself in new language Word from our sponsor ...

e Programming Assignments done ALONE

o We use plagiarism detection software
- | am an expert
- Have code from all previous classes
MOSS is fantastic, plagiarize at your own risk

e Zero Tolerance
- offenders punished ruthlessly

Free your mind. e Please see academic integrity statement

Flo ESt Vew G0 Bookmarks Toos Hep

- . 8 AT R T e Ra———r e —— D © Sy vopde expessin
@ Ceting Started () Research Foundation | JUberty | jMonsanso - Soybesrs (320 [)550 |)682 - DataMing ElLatest Headines
Index of /-phanoicscSS0 Exarcaer £ CSCI11.052148 . WeeCT 415 R WetCT Snon Answer Regur E ¥]| incex of i-pancicsci 11 LaMOSS %]

LA/ p1/ (50°%) BN ./ i/p1/ (45%) m—
5 74-90

| m— | | S—
|35 —
/) 5363 | S—
= promeT TrevTY - "~
en the limitse how many even aed ultiples sre displayed
410 spaces for ea right align*
0dd++:
£((ndish2) ! =1 ating odds and evens® else
ovenes avenss.
roumrendis: rSumedisMult: /*sum up a1l multple values in the rowe/
counterss counterss
sdisemlt disMulteemult; /*set display value to next sultiple valuet/
1f (adisn2) /*do not display a multiple value of zerot/
oddes 1 (disHul teed)
disMulteenult
| S— /*display the sum of the row at the end of the rowt/
| S—
printf (“\n\nThere are %d odd and \d even rusbers.\n",odd,even); /*stating the rSus~
PrANtT(“The sus of all nusbers 1s: Wd\n\a*.sus): /*showing the sus*/ countersl Y
/*resting the value for next time running through progr]
#¥an=0; /*display total nusber of odd and even multiples and the sus of all valuess/
0dd=0; printf(“\n\nThere are %d odd and A4 even rusbers.\n",odd. even)
suB=0 printf(“The sus of all nusbers 1s: Vd\n",sus)
/ t values for next repititiont/ []
}
)
return 0: return 0
U
<€ > <€ >
3 rro: regar) Fed Neat Mghight () Makch case

I ross.c3 Derkeley 60 ~moas st TOMAETIO

Say hello to OCaml

void sort(int arr[], int beg, int end) {
if (end > beg + 1){
int piv = arr[beg];
int 1 = beg + 1;
int r = end;
while (1 !'= r-1){
if (arr[l] <= piv)
ALaFs=p
else
swap (&arr[l], &arr[r--1);

| (h::t)

}

if (arr[l]<=piv && arr[r]<=piv)
1=r+1;

else if (arr[l]<=piv && arr[r]>piv)
{1++; r——;}

else if (arr[l]>piv && arr[r]<=piv)
swap (&arr[1l++], &arr[r--]1);

else
r=1-1;

swap (&arr[r--], é&arr[beg]);

sort (arr, beg, r);

sort (arr, 1, end);

Quicksort in C

Why readability matters...

let rec sort xs =
match xs with [] -> []

=>

let(l,r)= List.partition ((<=) h) t in
(sort 1)@h:: (sort r)

Quicksort in Ocaml

sort=: (($:Q(<#[), (=#[) ,$:Q(>#[)) ({~ 2@#))": (1:<#)

Quicksort in J

Say hello to OCaml

let rec sort xs =
match xs with
I [] => []
| h::t ->
let (l,r)= List.partition ((<=) h) t in
(sort 1)@h:: (sort r)

Quicksort in OCaml

ML: History, Variants

“Meta Language”
Designed by Robin Milner
To manipulate theorems & proofs

Several dialects:
» Standard ML (SML)
- Original syntax
e Objective Caml: (Ocaml)
- “The PL for the discerning hacker”
- State-of-the-art, extensive library, tool, user support
o F# (Ocaml+.NET) released in Visual Studio

Plan (next 4 weeks)

1. Fast forward
e Rapid introduction to whats in ML

2. Rewind

3. Slow motion
» Go over the pieces individually

ML’s holy trinity
—>

Expression Value

Type

e Everything is an expression
e Everything has a value
« Everything has a

Interacting with ML

“Read-Eval-Print” Loop

Repeat:

1. System reads expression e

2. System evaluates e to get value v
3. System prints value v and type

What are these expressions, values and ?

Base type: Strings

A\Y ab 4 “ab ”
({3

”»

A\Y ab ” A “Xy” abxy

string

Complex expressions using “operators”:(why the quotes ?)

e Concatenation *

Base type: Integers

2 2

240 4

2 x (9+10) Y 38

2 * (9+10) -12 26
int

' i . (why the quotes ?)
Complex expressions using “operators’:(why th ?

*
)

e div, mod

o +, -

Base type: Booleans

true true

false false

1 <2 N true

“aa” = “pg” - v false

(“aa” = “pg”) && (1<2) false

(“aa” = “aa”) && (1<2) true
bool

Complex expressions using “operators”:
e “Relations”: =, <, <=, >=
e &&, ||, not

Type Errors

(2+3) | | (\\all — \\bl/)

\\pqll A 9
(2 + \\all)

Untypable expression is rejected

» No casting, No coercing

» Fancy algorithm to catch errors

e ML’s single most powerful feature (why ?)

Complex types: Product (tuples)

(9-3,%ab”~Ved”, (2+2 ,7>8)) > (6, “abcd”, (4false))

(int * string * (int * bool))

e Triples,...

e Nesting:
- Everything is an expression
- Nest tuples in tuples

Complex types: Product (tuples)

(2+2 , 7>8); [C——> (4,false)
int * bool
Complex types: Lists
(1; ["a list
[1g2g3] ¢ [1;2;3] int list
[1+1;2+2;3+3;4+4]; [2;4;6;8] int list

[\\all; “b”; \\C/I/\\\d//] ; [“a”;“b”; “Cd”] String list

[(1’ \\all/\\\bll) ; (3+4, \\CII)] ; [(1"‘ab”);(7,“c”)]

[[1]7[2;3);[4:5:611; [[11;[2;3];[4;5;6]1; (int list) list

e Unbounded size

e Can have lists of anything (e.g. lists of lists)
e but ...

(int*string) list

Complex types: Lists

[1; \\pqll] ;

All elements must have same type

Complex types: Lists

List operator “Append” @

[1;2]@[3;4:;5]; [1;2;3;4;5] int list
ta”]e[b” |:> [“a”;“b”] string list
(1e[il; [1] string list

Can only append two lists 1 @ [2;3];

... of the same type '[L1] @ [“a“;"D“];

Complex types: Lists

List operator “Cons”

Lzs[[]g [1] int list
1::02); > [12] int List
NG, [\\b"’. \\c"] ; [“a";“b”;“c"] String list

Can only “cons” element to a list of same type
l:: [\\bll; \\Cd//];

Complex types: Lists

List operator “head” hd

hd [1;2]; int
[] N 1 i
hd ([“a”]@[“b"]); “a” string

Only take the head a nonempty list 'hd [];

Complex types: Lists

List operator “tail” tl

int list

tl [1;2;3]; N [253]
tl ([“a”]1@["b"]); Vb7 string list

Only take the tail of nonempty list €1 [];

So far, a fancy calculator...

... what do we need next ?

Recap: Tuples vs. Lists ?

What’s the difference ?

e Tuples:

- Different types, but fixed number:
(int * string)

(3, “abcd”)
o pair =2 elts

(3, “abcd”, (3.5,4.2))

« triple = 3 elts
e Lists:

(int * string * (float* float))

- Same type, unbounded number:

[3;4;5;6;7]

int list

