CSE 130 : Programming Languages

Higher-Order Functions

Ranjit Jhala
UC San Diego

Q: What does this evaluate to ?

let rec foo i 7
if i >= j then []
else i:: (foo (i+1) 7J)

in foo 0 3

(@) [0;1;2]
(b) [0;0;0]
(c) I

d) [2;2;2]
(e) [2;1;0]

Recursion

« Away of life

« Adifferent way to view computation
- Solutions for bigger problems
- From solutions for sub-problems

Why know about it ?

1. Often far simpler, cleaner than loops
- But not always...

2. Forces you to factor code into reusable units
- Only way to “reuse” loop is via cut-paste

Q: What does this evaluate to ?

let rec range 1 j =
if 1 >= j then []
i

else i:: (range (i+1) 7J)

range 3 3 ====>]

range 2 3 ====> 2::(range 3 3) ====> 2:1]
range 1 3 ====> 1::(range 2 3) ====> 1::2:1]
range 0 3 ====> 0::(range 1 3) ====> 0::1::2::[]

Q: What does this evaluate to ? Q: What does this evaluate to ?

let range lo hi =
let rec helper res j =
if lo >= 7 then res
else helper (j::res) (J-1)
in helper [] hi

let rec range 1 j =
if 1 >= j then []
i

else i:: (range (i+1l) 7)

Tail Recursive? . .
Tail Recursive!

Moral of the day... News

e PA2 due FRIDAY @ 23:59:59pm

Recursion good... " PA3 goes up soon
...but HOFS better! o™ ™

- Open book etc.
- Practice materials on webpage

Today’s Plan Write: evens

« Alittle more practice with recursion
- Base Pattern -> Base Expression
- Induction Pattern -> Induction Expression

» Higher-Order Functions
- or, why “take” and “return” functions ?

evens] ====>[]
evens [1;2;3;4] ====>[2;4]
Write: evens Write: fourlLetters

fourLetters []
evens [] ====>] ====>]

fourLetters [“cat”;"must”;“do”;“work”]
====> [“must”; “work’]

evens [1;2;3;4] ====>[2;4]

Write: evens

(* fourLetters: string 1list -> string 1ist *)
let rec fourletters xs = match xs with
| [] -> []
| x::xs’” => if length x = 4
then x:: (fourlLetters xs’)
else (fourletters xs’)

fourLetters []

fourLetters [“cat”;“must”;“do”;“work”]
====> [“must”; “work”]

(* evens: 1int 1list -> int 1ist *)
let rec foo xs = match xs with
| T[] -> []
| x::xs” =-> if
then x:: (foo xs’)
else (foo xs’)

(* fourLetters: string list -> string list *)
let rec foo xs = match xs with
| T[] -> []
| x::xs’” -> if length x = 4
then x:: (foo xs’)
else (foo xs’)

Yuck! Most code is same!

(* val evens: int 1list -> int 1ist *)
let rec evens xs = match xs with
| T[] -> []
| x::xs’” => if x mod 2 = 0
then x:: (evens xs’)
else (evens xs’)

(* fourLetters: string list -> string list *)

let rec fourletters xs = match xs with

| [] -> []

| x::xs’” =-> if length x = 4
then x:: (fourletters xs’)
else (fourLetters xs’)

Yuck! Most code is same!

Moral of the Day...

“D.R.Y”

Don’t Repeat Yourself!

M_oral of the Day...

HOFs Allow “Factoring”

General “Pattern”

+

Specific “Operation”

let rec evens xs =
match xs with
I [=> []
-> if
then x:: (foo xs’)
else (foo xs’)

let rec fourletters xs =
match xs with
| [] -> []

| x::xs’ =->

| x::xs’ if length x = 4
then x:

else (foo xs’)

let evens xs =

let fourletters xs =
filter

XS filter (fun x -> length x = 4) xs

let rec filter f xs =
match xs with
| [] -> []
-> if £ x
then x:

| x::xs’
: (filter xs’)
else (filter xs')

The “filter” pattern

: (foo xs’

let evens xs =

let rec evens xs =

letrec fourletters xs =
match xs with

match xs with

| [] => [| [] => [
| x::xs’ =-> if | x::xs’” -> if length x = 4
then x:: (foo xs’)

then x::
else (foo xs’)

let rec filter f xs =
match xs with
| [1 => []
| x::xs’ -> if £ x
then x:: (filter xs’)
else (filter xs’)

The “filter” pattern

Factor Into Generic + Specific

o Specific Operations

A‘E:#ﬂ’ﬂ*ﬂﬂd‘ let ;:::::tzggibxs =

filter

XS filter (fun x -> length x = 4) xs

let rec filter XS =
match xs with
| [] => [
| x::xs’ => if
then x:: (filter xs’)
else (filter xs’)

Generic “filter” pattern

(foo xs’
else (foo xs’

)

)

Write: listUpper Write: listUpper

listUpper [] ====>] listUpper [] ====>]
listUpper [“carne”; “asada”] ====> [“CARNE”; “ASADA”] listUpper [“carne”; “asada”] ====> [“CARNE”; “ASADA”]
Write: listSquare Write: listSquare

listSquare [] ====>] listSquare [] ====>]
listSquare [1;2;3;4;5] ====>[1;4;9;16,;25] listSquare [1;2;3;4;5] ====>[1;4;9;16;25]

Yuck! Most code is same! What’s the Pattern?

let rec listUpper xs = let rec listUpper xs =

match xs with match xs with

| [] =>[] | [] =>[]

| x::xs’"->(uppercase x)::(listUpper xs’) | x::xs’->(uppercase x)::(listUpper xs’)
let rec listSquare xs = let rec listSquare xs =

match xs with match xs with

| [] -> [] | [] -> []

| x::xs’"=> (x*x)::(listSquare xs’) | x::xs"=-> (x*x)::(listSquare xs’)

What’s the Pattern? “Refactor” Pattern

let rec listUpper xs =

let rec listUpper xs = match xs with

match xs with | [->[]
|] ->[] | x::xs"=>() :: (listUpper xs’)
RS):: (listUpper xs’) let rec listSquare xs =
match xs with
1 15 = | T[] -> []
et rec listSquare xs = | x::xs"=> () :: (listSquare xs’)
match xs with
| T[] -> [] let rec pattern

| x::xs"=> () :: (listSquare xs’)

“Refactor” Pattern

let rec listUpper xs =

match xs with

| x::xs’=->(

let rec listSquare xs =

[] ->[]
) :: (listUpper xs’)

match xs with

let rec map XS =

| T[] -> []

| x::xs"=> () :: (listSquare xs’)

match xs with

let rec listUpper xs =

| T[] -> []

| x::xs"=> () ::(map £ xs')

“Refactor” Pattern

match xs with
| [] =>[]

| x::xs"=>() :: (listUpper xs’)

let listUpper = map

let rec map XS =

match xs with
| [] =-> []

| x::xs"=> ():: (map £ xs')

“Refactor” Pattern

let rec listUpper xs
match xs with
| [] =>[]

| xX::x8"=->(

let listUpper xs = map

let rec map Xs =
match xs with
| [] -> []

| x::xs"=> () gc¢

) :: (listUpper xs’)

(map £ xs’)

“Refactor” Pattern

let listSquare = map

let rec listSquare xs =

match xs with
| [] -> []

| x::xs"=> () <

let rec map XS =
match xs with
| [] -> []

| x::xs"=> () 8¢

: (listSquare xs’)

:(map £ xs’)

XS

Factor Into Generic + Specific

let listSquare = map (fun = -> x * x)

let listUpper = map ulgpercase;’Q

Spec1f1c Op

let rec map Xs =
match xs with

| [] => []
| x::xs"=-> () :: (map £ xs’)

Generic “iteration” pattern

Q: What is the type of map?

let rec map £ =
match xs with
| [] -> []
| T -> (f %)::(map £)

) ("a -> 'b) -> “a list -> ‘b list
) (int -> int) -> int list -> int list

) ("a -> ‘a) -> ‘a list -> ‘a list

(a
(b
(c) (string -> string) -> string list -> string list
(d
(

e) (‘a -> 'b) -> ‘¢ list -> °d list

Moral of the Day...

“D.R.Y”

Don’t Repeat Yourself!

Q: What is the type of map?

let rec map £ =
match xs with
| T[] -> []
| T -> (f %):: (map £)

(@) (‘fa -=> 'b) => "a list =-> b list

Type says it all !
o Apply “f” to each element in input list
e Return a list of the results

Q: What does this evaluate to ?

map (fun (x,y) -> x+vy)

[1;2; 3]

(@) [2;4;6]
(b) [3;5]

(¢) Syntax Error
(e) Type Error

Don’t Repeat Yourself!

let rec map £ xs =
match xs with

| T[] -> []

R

| x::xs” => (£ x)::(map £ xs’)

Made Possible by Higher-Order Functions!

M

Don’t Repeat Yourself!

let rec map £ xs =
match xs with
| [] -> [

| x::xs’” => (£ x)::(map £ xs’)

S

“Factored” code:

e Reuse iteration template

» Avoid bugs due to repetition
 Fix bug in one place !

Recall: len

len [“carne’;

(* ‘a l1ist -> int *)
let rec len xs =

match xs with

| T[] -> 0

| x::xs’=-> 1 + len xs’

len [] ====>0

asada”’] ====>2

Recall: sum Write: concat

concat [“carne”; “asada”; “torta”]
====> “carneasadatorta”

L concat []
Sum [] ====> O ====>
sum [10;20;30] ====>60 concat [“carne”; “asada”; “torta”]
====> “carneasadatorta”
Write: concat What'’s the Pattern?
concat []
et -

What’s the Pattern? -
. R e

“fold” Pattern - Q: What does this evaluate to ?
foldr (fun x n -> x::n) [] [1:;2;3]

(a) [1;2;3]

(b) [3;2;1]
(c) II
(d) [[BLI2LI11]

(e) [M11;[21[31]

Specific Op S

“fold-right” pattern The “fold” Pattern

let rec foldr £ b xs = let rec foldr £ b xs =
match xs with match xs Wltﬂ -
| [] -> Db | [] -> b

|x::xs"=> £ x (foldr £ b xs') |x::xs’=> £ x (foldr f b xs’)

foldr f b [x1;x2;x3] : 1
====>f x1 (foldr f b [x2;x3]) Ta]l ReCUFSWe?
====> f x1 (f x2 (foldr f b [x3]))

====> f x1 (f x2 (f x3 (foldr f b [])))

====>f x1 (f x2 (f x3 (foldr f b [])))

====>f x1 (f x2 (f x3 (b)))

.~ o~ o~ o~
.~ o~ o~ o~

The “fold” Pattern Write: concat (TR)

let rec foldr £ b xs =
match xs with
Il ->b
|x::xs"=> £ x (foldr £ b xs’)

let concat xs

Tail Recursive?
No! coneatll

concat [“carne”; “asada’; “torta”]
====> “carneasadatorta”

Write: concat

let concat xs =
let rec helper res = function
| [] -> res
| x::xs’-> helper (res”x) xs’
in helper “ xs

helper “ [“carne”; “asada”; “torta”]
====> helper “carne” [“asada”; “torta”]
====> helper “carneasada” [“torta”]
====> helper “carneasadatorta” []
====> “carneasadatorta”

Write: concat

let sum xs =
let rec helper res = function
| [] -> res
| x::xs’-> helper (rest+x) xs’
in helper 0 xs

helper 0 [10; 100; 1000]
====> helper 10 [100; 1000]
====> helper 110 [1000]
====> helper 1110 []

====> 1110

Write: sum (TR)

let sum xs =

sum [] ====> (0

sum [10;20;30] ====> 60

What’s the Pattern?

let sum xs = let concat xs =
let rec helper res = function let rec helper res = function
| [1] -> res | [] -> res
| x::xs’-> helper (res x) xs' | x::xs’=> helper (res * x) xs’
in helper XS in helper “” xs
let sum xs = let sum xs =
foldl foldl (fun res x -> res * x) V7
let foldl Xs =
let rec helper res = function
| [1] -> res
| x::xs’"=-> helper (f res x) xs’

in helper XS

“Accumulation” Pattern

let foldl £ b xs =
let rec helper res = function
| [] -> res
| x::xs’=> helper (f res x) xs’

in helper b xs

let sum xs = let sum xs =

foldl foldl (fun res x -> res * x) WV

Specific Op

Funcs taking/returning funcs

|ldentify common computation “patterns”
 Filter values in a set, list, tree ...

o |terate a function over a set, list, tree ...
o Accumulate some value over a collection
Pull out (factor) “common” code:

o Computation Patterns
« Re-use in many different situations

Q: What does this evaluate to ?

foldl (fun res x -> x::res) [] [1;2;3]

(a) [1;2;3]

(b) [3;2;1]

(c) 11

(d) [[3L;[25;[11]
(e) [[M1;[21;[31]

let foldl £ b xs =
let rec helper res xs = match xs with
| [1] -> res
| x::xs’=> helper (£ res x) xs’

in helper b xs

Another fun function: “pipe”

let pipe x £ = £ x
let (|>) x £ = £ x

Compute the sum of squares of numbers in a list ?

let sumOfSquares xs =
XS |> map (fun x -> x * X)
|> foldl (+) O

Tail Rec ?

Funcs taking/returning funcs Functions are “first-class” values

|dentify common computation “patterns” e Arguments, return values, bindings ...

 Filter values in a set, list, tree ... « What are the benefits ?

« Convert a function over a set, list, tree ... Parameterized, Iterator, Accumul,

similar functions Reuse computation
. . .g. Test pattern w/o
. Iterate a function over a set, list, tree ... (€3 TSEErS) | reating, ™| Using, |exposing local info
(Returning) (Taking)
. Functions Functions

« Accumulate some value over a collection

Pull out (factor) “common” code:

o Computation Patterns

» Re-use in many different situations

Functions are “first-class” values Funcs taking/returning funcs

« Arguments, return values, bindings ... Higher-order funcs enable modular code

« What are the benefits ? « Each part only needs local information
Parameterized, Iterator, Accumul, i
similar functions Reuse computation Strll)J?:E:?J re i t Dait::a

.g. Test attern w/o . > ructure
(e.g. Testers) Creating, T Using, gxposing local info Chen.t Library

(Returning) (Taking) Uses 1list list
Functi Functi
unctions [~ Functions Uses meta-functions: Provides meta-functions:

map, fold, filter map, fold, filter
Flexible way to build (1t h), square etc. lists, trees etc.
Complex functions Without requiring Implement. Meta-functions don’t need client

Compose Functions: With locally-dependent funs \ to traverse, accumulate over
from primitives. details of data structure : info (tester ? accumulator ?)

