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Recap: Functions as “first-class” values

e Arguments, return values, bindings ...
« What are the benefits ?

Parameterized, Iterator, Accumul,
similar functions Reuse computation
(e.g. Testers) ‘ . pattern w/o
Creating, 7 Using, exposing local info
(Returning) (Taking)
Functions Functions




Functions are “first-class” values

e Arguments, return values, bindings ...
« What are the benefits ?

Parameterized,
similar functions

(e.g. Testers)

Iterator, Accumul,

Creating, N Using,
(Returning) (Taking)

Functions [&__ _~"| Functions

Compose Functions:
Flexible way to build
Complex functions
from primitives.

Reuse computation

pattern w/o
exposing local info



Funcs taking/returning funcs

Higher-order funcs enable modular code
e Each part only needs local information

Data

Client
Uses 1list

Uses meta-functions:

map, fold, filter

With locally-dependent funs
(1t h), square etc.
Without requiring Implement.
details of data structure

Structure €

> Structure

Data

Library
list

Provides meta-functions:

map, fold, filter

to traverse, accumulate over
lists, trees etc.

Meta-functions don’t need client
info (tester ? accumulator ?)



“Map-Reduce” et al.

Higher-order funcs enable modular code
e Each part only needs local information

Map-Reduce Map-Reduce

< >

Client Library

Web Analytics “Queries”
Clustering, Page Rank, etc
as map/reduce + ops

Provides: map, reduce
to traverse, accumulate
over WWW (“Big Data”)

Distributed across “cloud”



Higher Order Functions
Are Awesome...



Higher Order Functions
..but how do they work



Next: Environments & Functions

Expressions | > Values

AR

Types

Lets start with the humble variable...



Variables and Bindings

Q: How to use variables in ML ?
Q: How to “assign” to a variable ?

# let x = 242;;
val x : 1nt = 4

let x = e;;

“Bind value of expr e to variable x”



Variables and Bindings

# let x = 2+2;;

val x : int = 4

#f let v = x * x * x;;

val y : 1nt = 64

# let z = [x;y;x+yl;;

val z : 1nt 1list = [4,64,;,68]

Later expressions can use X

- Most recent “bound” value used for evaluation
Sounds like C/Java ?

NO!



Environments

How ML deals with variables

e Variables = “names”

e Values = “phone number”
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Environments and Evaluation

ML begins in a “top-level” environment
« Some names bound (e.g. +,-, print_string...)

let x = e;;
ML program = Sequence of variable bindings

Program evaluated by evaluating bindings in order
1. Evaluate expr e in current env to get value

2. Extendenvtobindxtov:
(Repeat with next binding)



Environments

“Phone book”
e Variables = “names”
e Values = “phone number”

1. Evaluate:
Find and use most recent value of variable

2. Extend:
Add new binding at end of “phone book”



Example

# let x = 2+42;;

val x : 1nt = 4

f let v = x * x * x;;

val y : 1int = 64

# let z = [x;y;xtyl;;

val z : 1int 1ist = [4,64,;68]
# let x = x + xX ;;

val x int = 8

New binding!

S e
N
v 64 : int
S o
R 64 INE o
z [4;64;68] : int list
k. dzint
Yo 84N
Zn] [4;64;68] : int list
X 8 :int




Environments

1. Evaluate: Use most recent bound value of var
2. Extend: Add new binding at end

How is it different from C/Java’s “store” ?

# let x = 2+2;; >4 4 :int

val x : int = 4

# let f = fun y -> x + v X4’nt ................................................................
val f : 1nt > 1nt = fn f .............. fn<code’ .......... T ............. >-,nt_>]nt
# let x

val x - New binding:

b £ 0; e o« NoO change or mutation
val 1t

o Old binding frozen in £



Environments

1. Evaluate: Use most recent bound value of var
2. Extend: Add new binding at end

How is it different from C/Java’s “store” ?

# let x = 2+2; >4 4 :int

val : int x = 4

Plet fopany v Ll T

val £ : 1nt -> 1nt = fn ‘ fn <code, SUinESing

# let x = X+ X 7

val x : int = 8; oA IINE A
f fn <code, T >: int->int

# £ 0; X 8 :int

val 1t : 1nt = 4




Environments

1. Evaluate: Use most recent bound value of var
2. Extend: Add new binding at end

How is it different from C/Java’s “store” ?

# let x = 2+2;
val x : 1nt = 4

# let £ = fun yv -> x + vy;;

val £ : int -> int = fn Binding used to eval (£ ..)

# let x = x + x ; UL LI R TR R R
val x : 1nt = 8 B, 4 ’nt ................... T ..........................................

f fn <code, >: int->int
# £ 0; X 8 :int

val 1t : int = 4 ..
Binding for subsequent x



Cannot change the world

Cannot “assign” to variables

e Can extend the env by adding a fresh binding
e Does not affect previous uses of variable

Environment at fun declaration frozen inside fun “value”
e Frozen env used to evaluate application (£ e)

Q: Why is this a good thing ?

# let x = 2+2;;
val x : 1nt = 4
# let £f = fun v -> x + vy;;

val £ : int —-> int = fn
# let x = X + X ;;

val x : int = 8;

# £ 0;;

val it : int = 4

Binding used to eval (£ ..)

x4t
f fn <code, T >: int->int
X 8 :int

Binding for subsequent x



Cannot change the world

Q: Why is this a good thing ?
A: Function behavior frozen at declaration



Immutability: The Colbert Principle

“A function behaves the same way on
Wednesday, as it behaved on Monday,
no matter what happened on Tuesday!”




Cannot change the world

Q: Why is this a good thing ?
A: Function behavior frozen at declaration

e Nothing entered afterwards affects function
e Same inputs always produce same outputs

- Localizes debugging

- Localizes reasoning about the program

- No “sharing” means no evil aliasing



Examples of no sharing

Remember: No addresses, no sharing.
e Each variable is bound to a “fresh instance” of a value

Tuples, Lists ...

o Efficient implementation without sharing ?
e There is sharing and pointers but hidden from you

« Compiler’s job is to optimize code
o Efficiently implement these “no-sharing” semantics

e Your job is to use the simplified semantics
o Write correct, cleaner, readable, extendable systems



Q: What is the value of res ?

let £ = fun x -> 1;;

let £ = fun x -> 1f x<2 then 1 else (x * £(x-1));;

let res = £ 5;;
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Function bindings

Functions are values, can bind using val
let fname = fun x -> e ;;

Problem: Can’t define recursive functions !
* fname is bound after computing rhs value

e no (or “old”) binding for occurences of fname inside e

let rec fname x e ;;

Occurences of fname inside e bound to “this” definition

let rec fac x = 1f x<=1 then 1 else x*fac (x-1)



Q: What is the value of res ?

let v = let x = 10 1in
X + X ;;

let res = (x, Vv);;

T —

(a) Unbound Var Error
(b) (10,20)
(c) (10,10)
(d) Type Error




Local bindings

So far: bindings that remain until a re-binding (“global”)

Local, “temporary” variables are useful inside functions
e Avoid repeating computations
e Make functions more readable

Let-in is an expression!

let x = el in Evaluating let-in in env E:
e2 1. Evaluate expr el inenv E to
get value

2. Useextended E [x|-> v : {]
(only) to evaluate e2



Local bindings

Evaluating let-in in env E:
1. Evaluate expr el in env E to get value

2. Use extended E [x |-> v : f] to evaluate e2

E[x:=10]




Let-in is an expression!

Evaluating let-in in env E:
1. Evaluate expr el in env E to get value

2. Use extended E [x |-> v : f] to evaluate e2

100 : int




Nested bindings

Evaluating let-in in env E:
1. Evaluate expr el in env E to get value

2. Use extended E [x |-> v : ] to evaluate e2




Nested bindings

let
x = 10
let x = 10 in
let v = 20 1n
X * vy

GOOD Formatting

BAD Formatting



Example

let rec filter £ xs =
match xs with

| ] -> []

| x::xs’ -> let ys = if f x then [x] else [] in

let ys’ filter £ xs in

ys @ ys’



Recap 1: Variables are names for values

e Environment: dictionary/phonebook
e Most recent binding used
e Entries never change

e New entries added



Recap 2: Big Exprs With Local Bindings

e let-in expression
e Variable “in-scope” in-expression

e QOutside, variable not “in-scope”



Recap 3: Env Frozen at Func Definition

e Re-binding vars cannot change function
e Indentical |/0 behavior at every call

e Predictable code, localized debugging



Static/Lexical Scoping

e For each occurrence of a variable,

A unique place where variable was defined!
- Most recent binding in environment

» Static/Lexical: Determined from program text
- Without executing the program

e Very useful for readability, debugging:
- Don’t have to figure out “where” a variable got assigned
- Unique, statically known definition for each occurrence



Next: Functions

Expressions | > Values

AR

Types

Q: What’s the value of a function ?



Immutability: The Colbert Principle

“A function behaves the same way on
Wednesday, as it behaved on Monday,
no matter what happened on Tuesday!”




Functions Expressions

Two ways of writing function expressions:

1. Anonymous functions: Parameter Body
(formal) Expr

2. Named functions: parameter  Body

(formal) Expr



Function Application Expressions

Application: fancy word for “call”

(el e2)

o Function value e1
e Argument e2
o “apply” argument e2 to function value el



Functions

The type of any function is:
e T1: the type of the “input”
e T2 : the type of the “output”



Functions Type

The type of any function is:
« T1: the type of the “input” T1->T2
e T2 : the type of the “output”

T1, T2 can be any types, including functions!

Whats an example of ?

e int ->int

e int *int -> bool

e (int -=>int) -> (int ->int)



Type of function application

Application: fancy word for “call”

(el e2)

“apply” argument e2 to function value el

el:T1->T2 e2: 11
(el e2) : T2

 Argument must have same type as “input” T1
e Result has the same type as “output” T2



Functions Values

Two questions about function values:

What is the value:
1. ... of a function ? fun x -> e

2. ... of a function “application” (call) ? (el e2)



Values of function = “Closure”

Two questions about function values:

What is the value:

1. ... of a function ? fun x -> e

Closure =
Code of Fun. (formal x + body e)

+ Environment at Fun. Definition



Values of function = “Closure”

Two questions about function values:

What is the value:

1. ... of a function ? fun x -> e

Closure =
Code of Fun. (formal x + body e)

+ Environment at Fun. Definition



Q: Which vars in env. of f ?

let x =2 + 2 ;;
let £f v =x+v ;;
let =z =x + 1 ;;
(@) x
(b) v
() x v
d) x v z
()



Values of functions: Closures

e Function value = “Closure”
- <code + environment at definition>

« Body not evaluated until application
- But type-checking when function is defined

# let x = 2+42;;

val x : 1int = 4

# let £ = fun yv -> x + vy;;
val £ : int -> int = fn

# let x = x + x;;

val x : int = 8

# £ 0;;

val 1t : int = 4

Binding used to eval (£ ..)

I N L
f fn <code, T >: int->int
X 8 :int

Binding for subsequent x



Q: Vars in closure-env of f?

let a = 20;;

let £ x = (@) a
let vy = x + 1 in (b) a
let z =y + z in (C) v

a + (0 x) (d) =z

& (€) v




Free vs. Bound Variables

let a = 20;;

(el e2)
let £ x =
let v = 1 in Environment frozen with function
let z =y + z in
a + ( x) Used to evaluate fun application

Which vars needed in frozen env?
£ 0;;



Free vs. Bound Variables

Inside a function:
let a = 20;;
A “bound” occurrence:

1. Formal variable

let £ x =
let v = 1 in 2. Variable bound in 1et-in
let z =y + z in x,vy, z are “bound” inside £
a + ( x)
. A “free” occurrence:
- e Non-bound occurrence
£ 0;; a is “free” inside £

Frozen Environment
needed for values of free vars



Q: Which vars are free in f ?

let a = 20;;

let £ x = (a) a
let 2 = 1 in (b) =
let z =a + z in (C) v
a + (o x) (d) =z

;s (e) None




Free vs. Bound Variables

let a = 20;;

let £ x =
let 2a = 1 in
let z = a + z in x, a, z are “bound” inside £
a + ( x)

— nothing is “free” inside £



Where do bound-vars values come from?

let a = 20;;

let £ x = |

: Bound values determined when

let a = 1 in . . ) ’

let 2 = a2 + 2 in function is evaluated (“called”)
a + ( x) o Arguments

e Local variable bindings

£f 0;



Values of function application

Two questions about function values:

What is the value:
1. ... of a function ? fun x -> e

2. ... of a function “application” (call) ? (el e2)

“apply” the argument e2 to the (function) el




Values of function application

Value of a function “application” (call) (el eZ2)

1. Find closure of el
2. Execute body of closure with param e2

Free values found in closure-environment

Bound values by executing closure-body



Values of function application

Value of a function “application” (call) (el eZ2)

. Evaluate el in current-env to get (closure)
= code (formal x + body e) + env E

. Evaluate e2 in current-env to get (argument) vZ

. Evaluate body e in env E extended with x := v2



Q: What is the value of

let = 1;;

lety = 10;;

let £ y = + v

let x = 2;

let vy = 3;

let =f (x + v);;




Q: What is the value of res ?

£ |-> formal:= vy

let x = 1;;

let _ .. body (= x + vy
let £ v = x + v;; = [x]=>1]
let x = 2;; x |-> 2

let = 3;; |-> 3

X + v ====> 5

Application: £ (x + )
Eval body in extended with formal|-> 5
Eval x+y in [x|->1, y|->5] ====> 6



Example

let x = 1;;

let £ y =

glet * =2 4in Q: Closure value of g?
:funz->x + y + z;_ﬁﬂ

;.;. ................................................... S

tet = &+ body x +y + z

let g ="f 4;; = l=52) vi=o4)

let = 100;;

body in extended with formal|-> 1
====>

Eval
Eval x+y+zin [x]|->2, yv|->4,z|->1]



Q: What is the value of res ?

let f g =
;e; ©E e (a) Syntax Error
' (b) 102
let x = 100;; (C) Type Error
(d) 2
let h = x4+ v;;
(e) 100

let res f h;;




Example 3




Static/Lexical Scoping

e For each occurrence of a variable,
- Unique place in program text where variable defined
- Most recent binding in environment

» Static/Lexical: Determined from the program text
- Without executing the program

e Very useful for readability, debugging:
- Don’t have to figure out “where” a variable got assighed
- Unique, statically known definition for each occurrence



Immutability: The Colbert Principle

“A function behaves the same way on
Wednesday, as it behaved on Monday,
no matter what happened on Tuesday!”




