
 
CSE 130: Programming Languages 

Ranjit Jhala 
UC San Diego

Environments & Closures



Recap: Functions as “first-class” values

• Arguments, return values, bindings … 
• What are the benefits ?

Creating, 
(Returning) 
Functions

Using, 
(Taking) 

Functions

Parameterized, 
similar functions 
(e.g. Testers)

Iterator, Accumul, 
Reuse computation  
     pattern w/o 

exposing local info



Functions are “first-class” values

• Arguments, return values, bindings … 
• What are the benefits ?

Creating, 
(Returning) 
Functions

Using, 
(Taking) 

Functions

Parameterized, 
similar functions 
(e.g. Testers)

Iterator, Accumul, 
Reuse computation  
     pattern w/o 

exposing local info

Compose Functions: 
Flexible way to build  
Complex functions  
from primitives.



Higher-order funcs enable modular code 
• Each part only needs local information

Funcs taking/returning funcs

Data  
Structure 
Library 
list

Data  
Structure 

Client 
Uses list

Provides meta-functions:  
map,fold,filter 

to traverse, accumulate over 
lists, trees etc. 
Meta-functions don’t need client  
info (tester ? accumulator ?)

Uses meta-functions:  
map,fold,filter 

With locally-dependent funs 
(lt h), square etc. 

Without requiring Implement.  
details of data structure



Higher-order funcs enable modular code 
• Each part only needs local information

“Map-Reduce” et al.

Map-Reduce 

Client

Provides:  map, reduce 
to traverse, accumulate  
over WWW (“Big Data”) 
Distributed across “cloud”

Web Analytics  “Queries” 
Clustering, Page Rank, etc 

as  map/reduce + ops 

Map-Reduce 

Library



Higher Order Functions 
 Are Awesome...



Higher Order Functions 
..but how do they work 



Next: Environments & Functions

Expressions Values

Types

Lets start with the humble variable...



Variables and Bindings

Q: How to use variables in ML ? 
Q: How to “assign” to a variable ?

let x = e;;

“Bind value of expr e to variable x”

# let x = 2+2;; 
val x : int = 4



Variables and Bindings

# let x = 2+2;; 
val x : int = 4 
# let y = x * x * x;; 
val y : int = 64 
# let z = [x;y;x+y];; 
val z : int list = [4;64;68]

Later expressions can use x 
– Most recent “bound” value used for evaluation 

Sounds like C/Java ?  
NO!



Environments (“Phone Book”)
How ML deals with variables 
• Variables = “names” 
• Values     = “phone number”

x       4 : int
y       64 : int
z       [4;64;68] : int list

...             ...

x       8 : int



Environments and Evaluation
ML begins in a “top-level” environment   
• Some names bound (e.g. +,-, print_string...)

let x = e;;

ML program = Sequence of variable bindings 

Program evaluated by evaluating bindings in order 
1. Evaluate expr e in current env to get value v : t 
2. Extend env to bind x to v : t 
(Repeat with next binding)



Environments
“Phone book” 
• Variables = “names” 
• Values = “phone number” 

1. Evaluate:  
Find and use most recent value of variable 

2. Extend: 
Add new binding at end of “phone book”



# let x = 2+2;; 
val x : int = 4 

# let y = x * x * x;; 
val y : int = 64 

# let z = [x;y;x+y];; 
val z : int list = [4;64;68] 

# let x = x + x ;; 
val x : int = 8

Example

x       4 : int
y       64 : int
z       [4;64;68] : int list

...             ...

x       4 : int
y       64 : int

...             ...

x       4 : int
...             ...

...             ...

x       4 : int
y       64 : int
z       [4;64;68] : int list

...            ...

x       8 : intNew binding!



Environments
1. Evaluate: Use most recent bound value of var  
2. Extend: Add new binding at end

How is it different from C/Java’s “store” ?

# let x = 2+2;; 
val x : int = 4 

# let f = fun y -> x + y; 
val f : int -> int = fn 

# let x = x + x ; 
val x : int = 8 

# f 0; 
val it : int = 4

x       4 : int
...            ...

New binding: 
• No change or mutation 
• Old binding frozen in f 

x       4 : int
f       fn <code,              >: int->int

...            ...



Environments
1. Evaluate: Use most recent bound value of var  
2. Extend: Add new binding at end

# let x = 2+2; 
val : int x = 4 

# let f = fun y -> x + y; 
val f : int -> int = fn 

# let x = x + x ; 
val x : int = 8; 

# f 0; 
val it : int = 4

x       4 : int
...             ...

x       4 : int
f       fn <code,              >: int->int

...             ...

x       8 : int

x       4 : int
f       fn <code,              >: int->int

...             ...

How is it different from C/Java’s “store” ?



Environments
1. Evaluate: Use most recent bound value of var  
2. Extend: Add new binding at end

# let x = 2+2; 
val x : int = 4 

# let f = fun y -> x + y;; 
val f : int -> int = fn 

# let x = x + x ; 
val x : int = 8 

# f 0; 
val it : int = 4

x       4 : int
f       fn <code,              >: int->int

...            ...

x       8 : int

Binding used to eval (f …)

Binding for subsequent x

How is it different from C/Java’s “store” ?



Cannot change the world
Cannot “assign” to variables 
• Can extend the env by adding a fresh binding 
• Does not affect previous uses of variable 

Environment at fun declaration frozen inside fun “value” 
• Frozen env used to evaluate application (f e) 

Q: Why is this a good thing ?

# let x = 2+2;; 
val x : int = 4 
# let f = fun y -> x + y;; 
val f : int -> int = fn 
# let x = x + x ;; 
val x : int = 8; 
# f 0;; 
val it : int = 4

x       4 : int
f       fn <code,              >: int->int

...             ...

x       8 : int

Binding used to eval (f …)

Binding for subsequent x



Cannot change the world

Q: Why is this a good thing ? 
A: Function behavior frozen at declaration



Immutability: The Colbert Principle 

“A function behaves the same way on  
Wednesday, as it behaved on Monday,  

no matter what happened on Tuesday!”



Cannot change the world

Q: Why is this a good thing ? 
A: Function behavior frozen at declaration 

• Nothing entered afterwards affects function 
• Same inputs always produce same outputs 

– Localizes debugging 
– Localizes reasoning about the program 
– No “sharing” means no evil aliasing



Examples of no sharing
Remember: No addresses, no sharing. 
• Each variable is bound to a “fresh instance” of a value 

Tuples, Lists … 

• Efficient implementation without sharing ?  
• There is sharing and pointers but hidden from you 

• Compiler’s job is to optimize code  
• Efficiently implement these “no-sharing” semantics 

• Your job is to use the simplified semantics  
• Write correct, cleaner, readable, extendable systems



Q: What is the value of res ? 

(a)  120   
(b)  60 
(c)  20  
(d)  5 
(e)  1

let f = fun x -> 1;; 
let f = fun x -> if x<2 then 1 else (x * f(x-1));; 
let res = f 5;;



Function bindings
Functions are values, can bind using val

let fname = fun x -> e ;;

Problem: Can’t define recursive functions ! 
• fname is bound after computing rhs value 

• no (or “old”) binding for occurences of fname inside e

let rec fname x = e ;;

Occurences of fname inside e bound to “this” definition

let rec fac x = if x<=1 then 1 else x*fac (x-1)



Q: What is the value of res ? 

(a)  Unbound Var Error     
(b)  (10,20) 
(c)  (10,10)  
(d)  Type Error   

let y = let x = 10 in 
        x + x ;; 

let res = (x, y);;



Local bindings
So far: bindings that remain until a re-binding (“global”) 

Local, “temporary” variables are useful inside functions 
• Avoid repeating computations 
• Make functions more readable

let x = e1 in 
  e2 
;;

Let-in  is an expression! 

Evaluating let-in in env E: 
1. Evaluate expr e1 in env E to 

get value v : t 
2. Use extended E [x |->  v : t] 

(only) to evaluate e2 



Local bindings

let  
   x = 5 + 5 
in 
  x * x 
;; 

...             ...

Evaluating let-in  in env E: 
1. Evaluate expr e1 in env E to get value v : t 
2. Use extended E [x |->  v : t] to evaluate e2 

x       10 : int
...             ...

...            ...

E

E[x:=10]

E



Let-in is an expression!

let y = 
  let  
    x = 10 
  in 
     x * x 
;; 

...            ...

Evaluating let-in in env E: 
1. Evaluate expr e1 in env E to get value v : t 
2. Use extended E [x |->  v : t] to evaluate e2 

x       10 : int
...            ...

...             ...
y      100 : int



Nested bindings

let  
 x = 10 
in 
  (let 
     y = 20 
   in    
     x * y)  
 + x 
;;

Evaluating let-in in env E: 
1. Evaluate expr e1 in env E to get value v : t 
2. Use extended E [x |->  v : t] to evaluate e2 

...             ...

x       10 : int
...             ...

x       10 : int
...             ...

y      20 : int

x       10 : int
...             ...

...             ...



Nested bindings

let  
 x = 10 
in 
  let 
    y = 20 
  in    
    x * y 
;;

let x = 10 in  
let y = 20 in    
  x * y 
;;

GOOD Formatting

BAD Formatting



Example

let rec filter f xs = 
  match xs with
  | []     -> []
  | x::xs’ -> let ys  = if f x then [x] else [] in
              let ys’ = filter f xs             in
              ys @ ys’



Recap 1: Variables are names for values

• Environment: dictionary/phonebook 

• Most recent binding used  

• Entries never change 

• New entries added



• let-in expression 

•  Variable “in-scope” in-expression 

•  Outside, variable not “in-scope”

Recap 2: Big Exprs With Local Bindings



Recap 3: Env Frozen at Func Definition

• Re-binding vars cannot change function  

• Indentical I/O behavior at every call 

• Predictable code, localized debugging



Static/Lexical Scoping

• For each occurrence of a variable, 
A unique place where variable was defined!  
– Most recent binding in environment 

• Static/Lexical: Determined from program text 
– Without executing the program 

• Very useful for readability, debugging: 
– Don’t have to figure out “where” a variable got assigned 
– Unique, statically known definition for each occurrence



Next: Functions

Expressions Values

Types

Q: What’s the value of a function ? 



Immutability: The Colbert Principle 

“A function behaves the same way on  
Wednesday, as it behaved on Monday,  

no matter what happened on Tuesday!”



Functions Expressions

Two ways of writing function expressions: 

1. Anonymous functions: 

2. Named functions:

Body 
Expr

let fname = fun x -> e 

let fname x = e

fun x -> e 

Parameter 
(formal)

Body 
Expr

Parameter 
(formal)



Function Application Expressions

Application: fancy word for “call”  

• Function value e1 
• Argument e2  
• “apply” argument e2 to function value e1 
 

(e1 e2)



Functions Type

The type of any function is:  
• T1 : the type of the “input” 
• T2 : the type of the “output”

T1 -> T2

let fname = fun x -> e 

T1    ->    T2

let fname x = e

T1  ->  T2



Functions Type

The type of any function is:  
• T1 : the type of the “input” 
• T2 : the type of the “output” 

T1, T2 can be any types, including functions! 

Whats an example of ? 
• int -> int 
• int * int -> bool 
• (int -> int) -> (int -> int)

T1->T2



          of function application

Application: fancy word for “call”  

• “apply” argument e2 to function value e1 
 

(e1 e2)

Type

e1 : T1 -> T2         e2 : T1     
(e1 e2) : T2 

• Argument must have same type as “input” T1 
• Result has the same type as “output” T2



Functions Values

Two questions about function values: 

What is the value: 

1. … of a function ? 

2. … of a function “application” (call) ? 
 

(e1 e2)

fun x -> e



Two questions about function values: 

What is the value: 

1. … of a function ? 
 

fun x -> e

           of function = “Closure”Values

Closure =  
     Code of Fun. (formal x + body e) 
  + Environment at Fun. Definition



Two questions about function values: 

What is the value: 

1. … of a function ? 
 

fun x -> e

           of function = “Closure”Values

Closure =  
     Code of Fun. (formal x + body e) 
  + Environment at Fun. Definition



Q: Which vars in env. of f ? 

(a)  x     
(b)  y  
(c)  x y  
(d)  x y z 
(e)  None

let x   = 2 + 2 ;; 
let f y = x + y ;; 
let z   = x + 1 ;;



           of functions: ClosuresValues

• Function value = “Closure” 
–  <code + environment at definition> 

• Body not evaluated until application 
– But type-checking when function is defined

# let x = 2+2;; 
val x : int = 4 
# let f = fun y -> x + y;; 
val f : int -> int = fn 
# let x = x + x;; 
val x : int = 8 
# f 0;; 
val it : int = 4

x       4 : int
f       fn <code,              >: int->int

x       8 : int

Binding used to eval (f …)

Binding for subsequent x



(a)  a y     
(b)  a  
(c)  y  
(d)  z 
(e)  y z

let a = 20;; 

let f x =  
  let y   = x + 1 in 
  let g z = y + z in    
    a + (g x) 
;;

Q: Vars in closure-env of f ? 



Environment  frozen with function 

Used to evaluate fun application 

Which vars needed in frozen env?

let a = 20;; 

let f x =  
  let y = 1 in 
  let g z = y + z in    
    a + (g x) 
;; 

f 0;;

(e1 e2)

Free vs. Bound Variables



Free vs. Bound Variables

let a = 20;; 

let f x =  
  let y = 1 in 
  let g z = y + z in    
    a + (g x) 
;; 

f 0;;

A “free” occurrence: 
• Non-bound occurrence 
a  is  “free” inside f

Inside a function: 

A “bound” occurrence: 
1. Formal variable 
2. Variable bound in let-in 
x, y, z  are “bound” inside f

Frozen Environment  
needed for values of free vars



(a)  a     
(b)  x  
(c)  y  
(d)  z 
(e) None 

let a = 20;; 

let f x =  
 let a   = 1 in 
  let g z = a + z in    
    a + (g x) 
;;

Q: Which vars are free in f ? 



Inside a function: 

A “bound” occurrence: 
1. Formal variable 
2. Variable bound in let-in-end 
x, a, z  are “bound” inside f 

A “free” occurrence: 
Not bound occurrence 
nothing is “free” inside f

Free vs. Bound Variables

let a = 20;; 

let f x =  
  let a = 1 in 
  let g z = a + z in    
    a + (g x) 
  ;; 

f 0;



Bound values determined when  
function is evaluated (“called”) 
•  Arguments 
•  Local variable bindings

let a = 20;; 

let f x =  
  let a = 1 in 
  let g z = a + z in    
    a + (g x) 
  ;; 

f 0;

Where do bound-vars values come from?



Two questions about function values: 

What is the value: 

1. … of a function ? 

2. … of a function “application” (call) ? 
 

(e1 e2)

fun x -> e

           of function applicationValues

“apply” the argument e2 to the (function) e1



           of function applicationValues

1. Find closure of e1 
2. Execute body of closure with param e2 

Free values found in closure-environment  

Bound values by executing closure-body

(e1 e2)Value of a function “application” (call)



           of function applicationValues

1. Evaluate e1 in current-env to get (closure)  
    = code (formal x + body e) +  env  E 

2. Evaluate e2 in current-env to get (argument) v2 

3. Evaluate body e in env E extended with x := v2

(e1 e2)Value of a function “application” (call)



(a)  4  (b)  5  (c)  6  (d)  11  (e) 12

let x   = 1;; 
let y   = 10;; 
let f y = x + y;; 
let x   = 2;; 
let y   = 3;; 
let res = f (x + y);;

Q: What is the value of res  ? 



Q: What is the value of res  ? 

let x   = 1;; 
let y   = 10;; 
let f y = x + y;; 
let x   = 2;; 
let y   = 3;; 
let res = f (x + y);;

f |-> formal:= y 
      body  := x + y 
      env   := [x|->1]

Application:  f (x + y) 
Eval body in env extended with formal|-> 5 
Eval x+y   in [x|->1, y|->5] ====> 6

x |-> 2

y |-> 3

x + y ====> 5



let x = 1;; 
let f y =  
  let x = 2 in 
  fun z -> x + y + z  
;; 
let x = 100;;  
let g = f 4;; 
let y = 100;; 
(g 1);;

Example

Q: Closure value of g? 

formal z 
body   x + y + z 
env   [x|->2, y|->4]

Eval   body in env extended with formal|-> 1 
Eval x+y+z in [x|->2, y|->4,z|->1] ====> 7



let f g =  
  let x = 0 in  
  g 2  
;; 

let x = 100;; 

let h y = x + y;; 

let res = f h;;

Q: What is the value of res  ? 

(a)  Syntax Error    
(b)  102   
(c)  Type Error 
(d)  2 
(e)  100



Example 3
let f g =  
  let x = 0 in  
  g 2  
;; 

let x = 100;; 

let h y = x + y;; 

f h;;



Static/Lexical Scoping

• For each occurrence of a variable,  
– Unique place in program text where variable defined 
– Most recent binding in environment 

• Static/Lexical: Determined from the program text 
– Without executing the program 

• Very useful for readability, debugging: 
– Don’t have to figure out “where” a variable got assigned 
– Unique, statically known definition for each occurrence



Immutability: The Colbert Principle 

“A function behaves the same way on  
Wednesday, as it behaved on Monday,  

no matter what happened on Tuesday!”


