CSE 130: Programming Languages

Environments & Closures

Ranjit Jhala
UC San Diego

Recap: Functions as “first-class” values

e Arguments, return values, bindings ...
« What are the benefits ?

Parameterized, Iterator, Accumul,
similar functions Reuse computation
(e.g. Testers) ‘ . pattern w/o
Creating, 7 Using, exposing local info
(Returning) (Taking)
Functions Functions

Functions are “first-class” values

e Arguments, return values, bindings ...
« What are the benefits ?

Parameterized,
similar functions

(e.g. Testers)

Iterator, Accumul,

Creating, N Using,
(Returning) (Taking)

Functions [&__ _~"| Functions

Compose Functions:
Flexible way to build
Complex functions
from primitives.

Reuse computation

pattern w/o
exposing local info

Funcs taking/returning funcs

Higher-order funcs enable modular code
e Each part only needs local information

Data

Client
Uses 1list

Uses meta-functions:

map, fold, filter

With locally-dependent funs
(1t h), square etc.
Without requiring Implement.
details of data structure

Structure €

> Structure

Data

Library
list

Provides meta-functions:

map, fold, filter

to traverse, accumulate over
lists, trees etc.

Meta-functions don’t need client
info (tester ? accumulator ?)

“Map-Reduce” et al.

Higher-order funcs enable modular code
e Each part only needs local information

Map-Reduce Map-Reduce

< >

Client Library

Web Analytics “Queries”
Clustering, Page Rank, etc
as map/reduce + ops

Provides: map, reduce
to traverse, accumulate
over WWW (“Big Data”)

Distributed across “cloud”

Higher Order Functions
Are Awesome...

Higher Order Functions
..but how do they work

Next: Environments & Functions

Expressions | > Values

AR

Types

Lets start with the humble variable...

Variables and Bindings

Q: How to use variables in ML ?
Q: How to “assign” to a variable ?

let x = 242;;
val x : 1nt = 4

let x = e;;

“Bind value of expr e to variable x”

Variables and Bindings

let x = 2+2;;

val x : int = 4

#f let v = x * x * x;;

val y : 1nt = 64

let z = [x;y;x+yl;;

val z : 1nt 1list = [4,64,;,68]

Later expressions can use X

- Most recent “bound” value used for evaluation
Sounds like C/Java ?

NO!

Environments

How ML deals with variables

e Variables = “names”

e Values = “phone number”

N BT R B B ol W

'w. Queensbury 01274 881373

- Road, Bradford 01274 603920
i, Brighouse 01484 722933

ster Rd, Linthwaite 01484 844586
). BD6 01274 679404

Slaithwaite 01484 843163

i, Wyke 01274 675753
Slaithwaite 01484 843681

, Queensbury 01274 818683
farsden 01484 844450

itt, Plains, Marsden 01484 844996
layton 01274 816057

1e, Linthwaite 01484 846885
Gro, Cross Roads 01535 643681
I, Todmorden 01706 818413

Av, Bradford 01274 672644

Jv, Queensbury 01274 818887

/., Pellon 01422 259543

Rd, Sowerby Bdge 01422 839907
f, Beechwood 01422 831577

t, Clayton 01274 882408

i, Brighouse 01484 714532

La_rr ~mA- am-m - e - — -

ADDDVTVT
-

10 Prospect Vw,
22 Shelf Moor Rc
5 Arnold Royd, B
1041 Mancheste
9 St Pauls Gro, B
10 Varley Rd, Sla
156 Wilson Rd, V

Robert 1 Wood St, Sla

RA
RA

2 Cheriton Dv, Q
5 Dirker Dv, Mar:
Dirker Bank Cott,
16 Holts La, Clay
46 Stones Lane, |
37 Laburnum Gr
160 Bacup Rd, T«
35 Markfield Av,
9 Brambling Dv, |
22b Albert Vw, Ps¢
13 Industrial Rd,
39 Whitley Av, Be
17 Gregory Ct, Cl
43 Bolehill Pk, Bri

- N tlfm.. MmN AT

“Phone Book”

Environments and Evaluation

ML begins in a “top-level” environment
« Some names bound (e.g. +,-, print_string...)

let x = e;;
ML program = Sequence of variable bindings

Program evaluated by evaluating bindings in order
1. Evaluate expr e in current env to get value

2. Extendenvtobindxtov:
(Repeat with next binding)

Environments

“Phone book”
e Variables = “names”
e Values = “phone number”

1. Evaluate:
Find and use most recent value of variable

2. Extend:
Add new binding at end of “phone book”

Example

let x = 2+42;;

val x : 1nt = 4

f let v = x * x * x;;

val y : 1int = 64

let z = [x;y;xtyl;;

val z : 1int 1ist = [4,64,;68]
let x = x + xX ;;

val x int = 8

New binding!

S e
N
v 64 : int
S o
R 64 INE o
z [4;64;68] : int list
k. dzint
Yo 84N
Zn] [4;64;68] : int list
X 8 :int

Environments

1. Evaluate: Use most recent bound value of var
2. Extend: Add new binding at end

How is it different from C/Java’s “store” ?

let x = 2+2;; >4 4 :int

val x : int = 4

let f = fun y -> x + v X4’nt ..
val f : 1nt > 1nt = fn f fn<code’ T >-,nt_>]nt
let x

val x - New binding:

b £ 0; e o« NoO change or mutation
val 1t

o Old binding frozen in £

Environments

1. Evaluate: Use most recent bound value of var
2. Extend: Add new binding at end

How is it different from C/Java’s “store” ?

let x = 2+2; >4 4 :int

val : int x = 4

Plet fopany v Ll T

val £ : 1nt -> 1nt = fn ‘ fn <code, SUinESing

let x = X+ X 7

val x : int = 8; oA IINE A
f fn <code, T >: int->int

£ 0; X 8 :int

val 1t : 1nt = 4

Environments

1. Evaluate: Use most recent bound value of var
2. Extend: Add new binding at end

How is it different from C/Java’s “store” ?

let x = 2+2;
val x : 1nt = 4

let £ = fun yv -> x + vy;;

val £ : int -> int = fn Binding used to eval (£ ..)

let x = x + x ; UL LI R TR R R
val x : 1nt = 8 B, 4 ’nt T ..

f fn <code, >: int->int
£ 0; X 8 :int

val 1t : int = 4 ..
Binding for subsequent x

Cannot change the world

Cannot “assign” to variables

e Can extend the env by adding a fresh binding
e Does not affect previous uses of variable

Environment at fun declaration frozen inside fun “value”
e Frozen env used to evaluate application (£ e)

Q: Why is this a good thing ?

let x = 2+2;;
val x : 1nt = 4
let £f = fun v -> x + vy;;

val £ : int —-> int = fn
let x = X + X ;;

val x : int = 8;

£ 0;;

val it : int = 4

Binding used to eval (£ ..)

x4t
f fn <code, T >: int->int
X 8 :int

Binding for subsequent x

Cannot change the world

Q: Why is this a good thing ?
A: Function behavior frozen at declaration

Immutability: The Colbert Principle

“A function behaves the same way on
Wednesday, as it behaved on Monday,
no matter what happened on Tuesday!”

Cannot change the world

Q: Why is this a good thing ?
A: Function behavior frozen at declaration

e Nothing entered afterwards affects function
e Same inputs always produce same outputs

- Localizes debugging

- Localizes reasoning about the program

- No “sharing” means no evil aliasing

Examples of no sharing

Remember: No addresses, no sharing.
e Each variable is bound to a “fresh instance” of a value

Tuples, Lists ...

o Efficient implementation without sharing ?
e There is sharing and pointers but hidden from you

« Compiler’s job is to optimize code
o Efficiently implement these “no-sharing” semantics

e Your job is to use the simplified semantics
o Write correct, cleaner, readable, extendable systems

Q: What is the value of res ?

let £ = fun x -> 1;;

let £ = fun x -> 1f x<2 then 1 else (x * £(x-1));;

let res = £ 5;;

Q)
=
N
o

o
o)
o

D QO
= O,

S e —
(@)

N S W N
N
o

Function bindings

Functions are values, can bind using val
let fname = fun x -> e ;;

Problem: Can’t define recursive functions !
* fname is bound after computing rhs value

e no (or “old”) binding for occurences of fname inside e

let rec fname x e ;;

Occurences of fname inside e bound to “this” definition

let rec fac x = 1f x<=1 then 1 else x*fac (x-1)

Q: What is the value of res ?

let v = let x = 10 1in
X + X ;;

let res = (x, Vv);;

T —

(a) Unbound Var Error
(b) (10,20)
(c) (10,10)
(d) Type Error

Local bindings

So far: bindings that remain until a re-binding (“global”)

Local, “temporary” variables are useful inside functions
e Avoid repeating computations
e Make functions more readable

Let-in is an expression!

let x = el in Evaluating let-in in env E:
e2 1. Evaluate expr el inenv E to
get value

2. Useextended E [x|-> v : {]
(only) to evaluate e2

Local bindings

Evaluating let-in in env E:
1. Evaluate expr el in env E to get value

2. Use extended E [x |-> v : f] to evaluate e2

E[x:=10]

Let-in is an expression!

Evaluating let-in in env E:
1. Evaluate expr el in env E to get value

2. Use extended E [x |-> v : f] to evaluate e2

100 : int

Nested bindings

Evaluating let-in in env E:
1. Evaluate expr el in env E to get value

2. Use extended E [x |-> v :] to evaluate e2

Nested bindings

let
x = 10
let x = 10 in
let v = 20 1n
X * vy

GOOD Formatting

BAD Formatting

Example

let rec filter £ xs =
match xs with

|] -> []

| x::xs’ -> let ys = if f x then [x] else [] in

let ys’ filter £ xs in

ys @ ys’

Recap 1: Variables are names for values

e Environment: dictionary/phonebook
e Most recent binding used
e Entries never change

e New entries added

Recap 2: Big Exprs With Local Bindings

e let-in expression
e Variable “in-scope” in-expression

e QOutside, variable not “in-scope”

Recap 3: Env Frozen at Func Definition

e Re-binding vars cannot change function
e Indentical |/0 behavior at every call

e Predictable code, localized debugging

Static/Lexical Scoping

e For each occurrence of a variable,

A unique place where variable was defined!
- Most recent binding in environment

» Static/Lexical: Determined from program text
- Without executing the program

e Very useful for readability, debugging:
- Don’t have to figure out “where” a variable got assigned
- Unique, statically known definition for each occurrence

Next: Functions

Expressions | > Values

AR

Types

Q: What’s the value of a function ?

Immutability: The Colbert Principle

“A function behaves the same way on
Wednesday, as it behaved on Monday,
no matter what happened on Tuesday!”

Functions Expressions

Two ways of writing function expressions:

1. Anonymous functions: Parameter Body
(formal) Expr

2. Named functions: parameter Body

(formal) Expr

Function Application Expressions

Application: fancy word for “call”

(el e2)

o Function value e1
e Argument e2
o “apply” argument e2 to function value el

Functions

The type of any function is:
e T1: the type of the “input”
e T2 : the type of the “output”

Functions Type

The type of any function is:
« T1: the type of the “input” T1->T2
e T2 : the type of the “output”

T1, T2 can be any types, including functions!

Whats an example of ?

e int ->int

e int *int -> bool

e (int -=>int) -> (int ->int)

Type of function application

Application: fancy word for “call”

(el e2)

“apply” argument e2 to function value el

el:T1->T2 e2: 11
(el e2) : T2

 Argument must have same type as “input” T1
e Result has the same type as “output” T2

Functions Values

Two questions about function values:

What is the value:
1. ... of a function ? fun x -> e

2. ... of a function “application” (call) ? (el e2)

Values of function = “Closure”

Two questions about function values:

What is the value:

1. ... of a function ? fun x -> e

Closure =
Code of Fun. (formal x + body e)

+ Environment at Fun. Definition

Values of function = “Closure”

Two questions about function values:

What is the value:

1. ... of a function ? fun x -> e

Closure =
Code of Fun. (formal x + body e)

+ Environment at Fun. Definition

Q: Which vars in env. of f ?

let x =2 + 2 ;;
let £f v =x+v ;;
let =z =x + 1 ;;
(@) x
(b) v
() x v
d) x v z
()

Values of functions: Closures

e Function value = “Closure”
- <code + environment at definition>

« Body not evaluated until application
- But type-checking when function is defined

let x = 2+42;;

val x : 1int = 4

let £ = fun yv -> x + vy;;
val £ : int -> int = fn

let x = x + x;;

val x : int = 8

£ 0;;

val 1t : int = 4

Binding used to eval (£ ..)

I N L
f fn <code, T >: int->int
X 8 :int

Binding for subsequent x

Q: Vars in closure-env of f?

let a = 20;;

let £ x = (@) a
let vy = x + 1 in (b) a
let z =y + z in (C) v

a + (0 x) (d) =z

& (€) v

Free vs. Bound Variables

let a = 20;;

(el e2)
let £ x =
let v = 1 in Environment frozen with function
let z =y + z in
a + (x) Used to evaluate fun application

Which vars needed in frozen env?
£ 0;;

Free vs. Bound Variables

Inside a function:
let a = 20;;
A “bound” occurrence:

1. Formal variable

let £ x =
let v = 1 in 2. Variable bound in 1et-in
let z =y + z in x,vy, z are “bound” inside £
a + (x)
. A “free” occurrence:
- e Non-bound occurrence
£ 0;; a is “free” inside £

Frozen Environment
needed for values of free vars

Q: Which vars are free in f ?

let a = 20;;

let £ x = (a) a
let 2 = 1 in (b) =
let z =a + z in (C) v
a + (o x) (d) =z

;s (e) None

Free vs. Bound Variables

let a = 20;;

let £ x =
let 2a = 1 in
let z = a + z in x, a, z are “bound” inside £
a + (x)

— nothing is “free” inside £

Where do bound-vars values come from?

let a = 20;;

let £ x = |

: Bound values determined when

let a = 1 in . .) ’

let 2 = a2 + 2 in function is evaluated (“called”)
a + (x) o Arguments

e Local variable bindings

£f 0;

Values of function application

Two questions about function values:

What is the value:
1. ... of a function ? fun x -> e

2. ... of a function “application” (call) ? (el e2)

“apply” the argument e2 to the (function) el

Values of function application

Value of a function “application” (call) (el eZ2)

1. Find closure of el
2. Execute body of closure with param e2

Free values found in closure-environment

Bound values by executing closure-body

Values of function application

Value of a function “application” (call) (el eZ2)

. Evaluate el in current-env to get (closure)
= code (formal x + body e) + env E

. Evaluate e2 in current-env to get (argument) vZ

. Evaluate body e in env E extended with x := v2

Q: What is the value of

let = 1;;

lety = 10;;

let £ y = + v

let x = 2;

let vy = 3;

let =f (x + v);;

Q: What is the value of res ?

£ |-> formal:= vy

let x = 1;;

let _ .. body (= x + vy
let £ v = x + v;; = [x]=>1]
let x = 2;; x |-> 2

let = 3;; |-> 3

X + v ====> 5

Application: £ (x +)
Eval body in extended with formal|-> 5
Eval x+y in [x|->1, y|->5] ====> 6

Example

let x = 1;;

let £ y =

glet * =2 4in Q: Closure value of g?
:funz->x + y + z;_ﬁﬂ

;.;. ... S

tet = &+ body x +y + z

let g ="f 4;; = l=52) vi=o4)

let = 100;;

body in extended with formal|-> 1
====>

Eval
Eval x+y+zin [x]|->2, yv|->4,z|->1]

Q: What is the value of res ?

let f g =
;e; ©E e (a) Syntax Error
' (b) 102
let x = 100;; (C) Type Error
(d) 2
let h = x4+ v;;
(e) 100

let res f h;;

Example 3

Static/Lexical Scoping

e For each occurrence of a variable,
- Unique place in program text where variable defined
- Most recent binding in environment

» Static/Lexical: Determined from the program text
- Without executing the program

e Very useful for readability, debugging:
- Don’t have to figure out “where” a variable got assighed
- Unique, statically known definition for each occurrence

Immutability: The Colbert Principle

“A function behaves the same way on
Wednesday, as it behaved on Monday,
no matter what happened on Tuesday!”

