CSE 130: Programming Languages

Ranjit Jhala
UC San Diego

Environments & Closures

Functions are “first-class” values

e Arguments, return values, bindings ...

« What are the benefits ?

Parameterized,

similar functions

(e.g. Testers)

Creating,
(Returning)
Functions

N\
<

Iterator, Accumul,
Reuse computation

Using,
(Taking)
Functions

Compose Functions:
Flexible way to build

Complex functions

from primitives.

pattern w/o
exposing local info

Without requiring Implement.

Recap: Functions as “first-class” values

e Arguments, return values, bindings ...
« What are the benefits ?

Parameterized, Iterator, Accumul,
similar functions Reuse computation
(e.g. Testers) .) pattern w/o
Creatlr)g, /\ Using, exposing local info
(Returning) (Taking)
Functions Functions

Funcs taking/returning funcs

Higher-order funcs enable modular code
« Each part only needs local information

Data Data
Structure € ' > Structure
Client ' Library

Uses 1list list

|
|
Uses meta-functions: i Provides meta-functions:
map, fold, filter E map, fold, filter
With locally-dependent funs | to traverse, accumulate over
(1t h), square etc. i lists, trees etc.
E Meta-functions don’t need client
|
|
|
|

details of data structure info (tester ? accumulator ?)

“Map-Reduce” et al.

Higher-order funcs enable modular code
e Each part only needs local information

Map-Reduce Map-Reduce
1
Client | Library
Web Analytics “Queries” i Provides: map, reduce
Clustering, Page Rank, etc i to traverse, accumulate
as map/reduce + ops i over WWW (“Big Data”)

Distributed across “cloud”

Higher Order Functions
..but how do they work

Higher Order Functions
Are Awesome...

Next: Environments & Functions

Expressions |:> Values

Sy 7

Types

Lets start with the humble variable...

Variables and Bindings Variables and Bindings

Q: How to use variables in ML ?
. . # let = 2+2;;
Q: How to “assign” to a variable ? L=
let v = x * x * x;;
val y : int = 64
- .. # let z = [x;y;x+y];;
L S val z : int list = [4;64;68]

Later expressions can use x
let x = e;; .
- Most recent “bound” value used for evaluation
” Sounds like C/Java ?

“Bind value of expr e to variable x o

Environments (“Phone Book™) Environments and Evaluation

How ML deals with variables ML begins in a “top-level” environment
e Variables = “names” « Some names bound (e.g. +,-, print_string...)

 Values = “phone number” let x = e;;

2 X 10 Prospect V

w, ury 01274 881373

Rox ford 01274 603920 5 22 Shetl ’p;% Ré
i, Br 484 722933 _ . . .
R s eiiE Saass R 1041 Mancheste ML program = Sequence of variable bindings
) 6 -

laithwaite 01484 843163 R %86"3’,’?05‘;;‘3

01274 675753 .
site 01484 843681 :°be?éhgf§;ﬁ ?)vsjoa % 4: ”?t
sbury 01274 818683 . i . i i
e 24442 RA 5 OirkerDvMar |Y... \CEIIOE Program evaluated by evaluating bindings in order
Mjnzi;scéwég484 844996 R ?gﬁ;gjtgﬁggy z [4;64;68] : int list

15/ on 01274 81 57 ’ 5 .

s TSR RD 46 St L L .
e, Linthwaite 01484 846885 RW 35 taumumen X 18:int 1. Evaluate expr e in current env to get value v : £
|, Todmorden 01706 818413 g igolaafi;‘plgd\ Te
Lv, Bradford 01274 672644 ie 1 .
¥, Queensoury 01274 818887 SP 9 Brambling Dv,. 2. Extendenvtobindxtov:t
Rd, Sowerby Bdge 01422 839907 ;E ;g t’\}ﬁ‘;striai R%

, Bl o itley Av, Be o . .
[Seccriood 01422 831577 IE 29wl ad (Repeat with next binding)

Bn',' house 01484 714532 W 43 Bolehill Pk, E}[,t

Environments

“Phone book”
e Variables = “names”
» Values = “phone number”

1. Evaluate:
Find and use most recent value of variable

2. Extend:
Add new binding at end of “phone book”

Environments

1. Evaluate: Use most recent bound value of var
2. Extend: Add new binding at end

Example
let x = 2+2;; X 4:%%
val x : int = 4
¥ let vy = x * x * x;; S ing
val y : int = 64 v 64" int
let z = [x;y;xty];; - N
val z : int 1ist = [4;64;68] [y 4int
v 64 : int
z [4;64;68] : int list
let x = x + x rs
val x : int = 8 : =
X 4 :int
v 64 : int
z [4;64;68] : int list
New binding! |x [8:int
Environments

1. Evaluate: Use most recent bound value of var

2. Extend: Add new binding at end

How is it different from C/Java’s “store” ? How is it different from C/Java’s “store” ?

let x = 242;; x 4 :int # let x = 2+2; x 4 :int
val x : int = 4 val : int x = 4
#letj?='fun y'—>>i+y; u At . #1etf.='funy'—>>i+y; x 4:int A
val £ : int -> int = fn £ fn<code, i SUint-sint val £ : int -> int = fn £ fn <code, i SUIRE SRt
let x = x + x ; # let x = x + x
val x : int = 8 % New bmdmg val x : int = 8; 4 :int R
‘ - . fn <code,) >: int->int
£ 0; « No change or mutation ¥ £ 0; e
val it : int = 4 val it : int = 4 - 1n

« Old binding frozen in £

Environments

1. Evaluate: Use most recent bound value of var

2. Extend: Add new binding at end

How is it different from C/Java’s “store” ?

let x = 2+2;
val x : int = 4

let £ = fun vy -> x + vy;;

val £ : int -> int = fn
let x = x + x

val x : int = 8

£ 0;

val it : int = 4

Binding used to eval (£ ..)

Cannot change the world

X 4 :int
f fn <code,) >: int->int
X 8 :int

Binding for subsequent x

Cannot change the world

Q: Why is this a good thing ?
A: Function behavior frozen at declaration

Cannot “assign” to variables

» Can extend the env by adding a fresh binding
» Does not affect previous uses of variable

Environment at fun declaration frozen inside fun “value”
o Frozen env used to evaluate application (£ e)

Q: Why is this a good thing ?

let x = 242;;

val x : int = 4

let £ = fun y -> x + y;;
val f : int -> int = fn

let x = x + X ;;

val x : int = 8;
£ 0;;
val it : int = 4

Binding used to eval (£ ..)

x 4 :int
f fn <code,) >: int->int
X 8 :int

Binding for subsequent x

Immutability: The Colbert Principle

“A function behaves the same way on
Wednesday, as it behaved on Monday,
no matter what happened on Tuesday!”

Cannot change the world

Q: Why is this a good thing ?
A: Function behavior frozen at declaration

« Nothing entered afterwards affects function
e Same inputs always produce same outputs

- Localizes debugging

- Localizes reasoning about the program

- No “sharing” means no evil aliasing

Q: What is the value of res ?

let £
let £

let res

fun x -> 1;;

fun x -> if x<2 then 1 else (x * £(x-1));;

Q
[
N
o

(o)
o
o

e — —
o 0N

N N T N N
o

Q)]
R 00N

Examples of no sharing

Remember: No addresses, no sharing.
» Each variable is bound to a “fresh instance” of a value

Tuples, Lists ...

« Efficient implementation without sharing ?
» There is sharing and pointers but hidden from you

« Compiler’s job is to optimize code
« Efficiently implement these “no-sharing” semantics

« Your job is to use the simplified semantics
« Write correct, cleaner, readable, extendable systems

Function bindings

Functions are values, can bind using val
let fname = fun x -> e ;;

Problem: Can’t define recursive functions !
* fname is bound after computing rhs value

« no (or “old”) binding for occurences of fname inside e

let rec fname x = e ;;

Occurences of fname inside e bound to “this” definition

let rec fac x = 1f x<=1 then 1 else x*fac (x-1)

Q: What is the value of res ?

let vy = let x = 10 in
X + x ;.

let res = (x, Vy);;

(@) Unbound Var Error
(b) (10,20)
(c) (10,10)
(d) Type Error

Local bindings

Evaluating let-in in env E:
1. Evaluate expr el in env E to get value
2. Use extended E [x |-> v :] to evaluate e2

let<<%.u_m, I . | E

x =5+ 5

167V int E[x:=10]

Local bindings

So far: bindings that remain until a re-binding (“global”)

Local, “temporary” variables are useful inside functions
» Avoid repeating computations
» Make functions more readable

Let-in is an expression!

let x = e] in Evaluating let-ininenv E:

1. Evaluate expr el inenv E to
e2
get value
r 2. Use extended E [x |-> v : {]

(only) to evaluate e2

Let-in is an expression!

Evaluating let-in in env E:
1. Evaluate expr el in env E to get value
2. Use extended E [x |I-> v : £] to evaluate e2

é I L |
let y =

let
x = 10

in{-....____r

X * x

. .
r 7
4.;

X 10 : int

N 100 : int

Nested bindings

Evaluating let-in in env E:

Nested bindings

1. Evaluate expr el in env E to get value let
2. Use extended E [x |-> v :] to evaluate e2 x = 10
let 4 = mosners| .. | in
‘ r D
X = 'lO let
in 4 B - _
in § % * v
x) 0 e A)

+x$ y 20 :int

- i

Example

let rec filter f xs =
match xs with
| 11 -> [1]
| x::xs’ -> let ys
let ys’
ys @ ys’

filter £ xs

BAD Formatting

let x = 10 in
let v = 20 in

Formatting

Recap 1: Variables are names for values

« Environment: dictionary/phonebook

e Most recent binding used

if £ x then [x] else [] in

in

e Entries never change

e New entries added

Recap 2: Big Exprs With Local Bindings Recap 3: Env Frozen at Func Definition

e let-in expression e Re-binding vars cannot change function
e Variable “in-scope” in-expression e Indentical I/0 behavior at every call

e Outside, variable not “in-scope” e Predictable code, localized debugging

Static/Lexical Scoping Next: Functions

e For each occurrence of a variable,
A unique place where variable was defined! Expressions |:> Values

- Most recent binding in environment % J

» Static/Lexical: Determined from program text T
: : YPE€s
- Without executing the program

» Very useful for readability, debugging:

- Don’t have to figure out “where” a variable got assigned ,)
- Unique, statically known definition for each occurrence Q: What’s the value of a function ?

Immutability: The Colbert Principle

“A function behaves the same way on
Wednesday, as it behaved on Monday,
no matter what happened on Tuesday!”

Function Application Expressions

Application: fancy word for “call”

(el e2)

Function value el
Argument e2
“apply” argument e2 to function value e1

Functions Expressions

Two ways of writing function expressions:

1. Anonymous functions:

Parameter Body
(formal) Expr

2. Named functions:

Parameter
(formal) Expr

let fname§x§= e
Functions Type
The type of any function is:
« T1: the type of the “input” T1 ->T2

e T2 : the type of the “output”

Functions Type

The type of any function is:

« T1: the type of the “input” T1->T2
e T2 : the type of the “output”

T1, T2 can be any types, including functions!

Whats an example of ?

e int ->int

e int *int -> bool

e (int ->int) -> (int ->int)

Functions Values

Two questions about function values:

What is the value:

Type of function application

Application: fancy word for “call”

(el e2)

« “apply” argument e2 to function value el

el:T1->T2 e2:T1
(el e2) : T2

« Argument must have same type as “input” T1
« Result has the same type as “output” 72

Values of function = “Closure”

Two questions about function values:

What is the value:

(1. ... of a function ? fun x -> e]

(1. ... of a function ? fun x -> e]

2. ... of a function “application” (call) ? (el e2)

Closure =

Code of Fun. (formal x + body e)
+ Environment at Fun. Definition

Values of function = “Closure”

Two questions about function values:

What is the value:

(1. ... of a function ? fun x -> e]

Closure =
Code of Fun. (formal x + body e)

+ Environment at Fun. Definition

Values of functions: Closures

e Function value = “Closure”
- <code + environment at definition>

» Body not evaluated until application
- But type-checking when function is defined

4 let x = 242;; Binding used to eval (£ ..)

Q: Which vars in env. of f ?

val x : int = 4

#letf='funy'—>x+y;; % 4 int

val £ : int -> int = fn ’l‘ . .
S Azge o — o b e f fn <code, >: int->int
val x : int = 8 x 8:int

£ 0;;

val it : int = 4 Binding for subsequent x

let x =2 + 2 ;;
let £ v =x+v ;;
let =z =x + 1 ;;

(a) x

(b) v

() x v

d) xy =z

(e) None

Q: Vars in closure-env of f ?

let a = 20;;
let £ x = (a)
let vy =x + 1 in (b)
let z =y + z in (c)
a + (o x) (d)
;7 (e)

K N K o @

Free vs. Bound Variables Free vs. Bound Variables

Inside a function:

let a = 20;; let a = 20;;
((el e2)] A “bound” occurrence:
let f x = let f x = 1. Formal variable
let v = 1 in Environment frozen with function let v = 1 in 2. Variable bound in let-in
let =z =y + z in let =z =y + z in x,y, z are “bound” inside £
= & (g =) Used to evaluate fun application 2 oA ig =) A “free” occurrence:

e Non-bound occurrence

. . ? . . .
Which vars needed in frozen env? 2 is “free” inside £

£ 0;; £ 0;;
Frozen Environment
needed for values of free vars
Q: Which vars are free in f ? Free vs. Bound Variables
let a = 20;; let a = 20;;

let £ x = (a) a
let a = 1 in () X let =z =a + z in x, a, z are “bound” inside £
let z=a + z in () ¥y =g
((d) = |
(€)

X)
nothing is “free” inside £

Where do bound-vars values come from? Values of function application

let a = 20;; Two questions about function values:
let f x _ What is the value:
. Bound values determined when
let a 1 in

function is evaluated (“called”)

LR g e = e e 1. ... of a function ? fun x -> e
(

e Arguments

,a ' o » Local variable bindings r ~
2. ... of a function “application” (call) ? (el e2)
£ 0
“apply” the argument e2 to the (function) e1
Values of function application Values of function application

(Value of a function “application” (call) (el e2

)
(Value of a function “application” (call) (el e2) J

1. Find closure of el

i 1. Evaluate el in current-env to get (closure
2. Execute body of closure with param e2 © get ()

= code (formal x + body e) + env E

Free values found in closure-environment 2. Evaluate e2 in current-env to get (argument) v2

Bound values by executing closure-body 3. Evaluate body e in env E extended with x := v2

Q: What is the value of res ?

let =1;;

let y = 10;;

let £ y = + y;

let x = 2;

let vy = 3;

let res = £ (x + v);;
@ 4 ()5 (c) 6 (d 11 (e)12
Example
let x = 1;;

XxX+y + z
[x[->2, y|->4]

Eval body in extended with formal|-> 1
Eval x+y+zin [x]|->2, y|->4,z|->1] ====> 7

Q: What is the value of res ?

let x =1;; f |-> formal:= vy

let = body =x+vy
let £y =x+y;; = [x]|->1]
let x = 2;; x |-> 2

let = 3;; |-> 3

let res —G:‘ (x +),) . s

Application: £ (x + V)
Eval body in extended with formal|-> 5
Eval x+y in [x|->1, y|->5] ====> 6

Q: What is the value of res ?

let f g =
;e; #=0n (@) Syntax Error
;i (b) 102
let x = 100;; (c) Type Error
let h v = x+v;; (d) 2
(e) 100

let res = f h;;

Example 3

let £ g =
let x = 0 in
g 2

let x = 100;;
let h =x + ;;

f h;;

Immutability: The Colbert Principle

“A function behaves the same way on
Wednesday, as it behaved on Monday,
no matter what happened on Tuesday!”

Static/Lexical Scoping

e For each occurrence of a variable,
- Unique place in program text where variable defined
- Most recent binding in environment

« Static/Lexical: Determined from the program text
- Without executing the program

« Very useful for readability, debugging:
- Don’t have to figure out “where” a variable got assigned
- Unique, statically known definition for each occurrence

