
 
CSE 130 Programming Languages 

Ranjit Jhala
UC San Diego

Datatypes

Recap: ML’s Holy Trinity

1. Programmer enters expression
2. ML checks if expression is “well-typed”

• Using a precise set of rules, ML tries to find a unique
 type for the expression meaningful type for the expr

3. ML evaluates expression to compute value
• Of the same “type” found in step 2

Expressions (Syntax) Values (Semantics)

Types

Compile-time
“Static”

Exec-time
“Dynamic”

Story So Far...

• Simple Expressions
• Branches
• Let-Bindings ...

• Today:
– Finish Crash Course
– Datatypes

3

Next: functions, but remember …

Everything is an expression
Everything has a value
Everything has a type

Expression Value

Type

A function is a value!

A shorthand for function binding

let neg = fun f -> fun x -> not (f x);
…
let neg f x = not (f x);
val neg : int -> int -> bool = fn

let is5gte = neg is5lt;
val is5gte : int -> bool = fn;
is5gte 10;
val it : bool = false;
is5gte 2;
val it : bool = true;

Put it together: a “filter” function

- let rec filter f xs =
 match xs with
 | [] -> []
 | (x::xs’)-> if f x
 then x::(filter f xs’)
 else (filter f xs’);;

val filter : (‘a->bool)->‘a list->‘a lisi) = fn

If arg “matches”
this pattern…

…then use
this Body Expr

let list1 = [1;31;12;4;7;2;10];;
filter is5lt list1 ;;
val it : int list = [31;12;7;10]
filter is5gte list1;;
val it : int list = [1;4;2]
filter even list1;;
val it : int list = [12;4;2;10]

Put it together: a “partition” function

let partition f l = (filter f l, filter (neg f) l);
val partition :(‘a->bool)->‘a list->‘a lisi * ‘a list = fn

let list1 = [1,31,12,4,7,2,10];
- …
partition is5lt list1 ;
val it : (int list * int list) = ([31,12,7,10],[1,2,10]

partition even list1;
val it : (int list * int list) = ([12,4,2,10],[1,31,7])

A little trick …
2 <= 3;; …
val it : bool = true
“ba” <= “ab”;;
val it : bool = false

let lt = (<) ;;
val it : ‘a -> ‘a -> bool = fn

lt 2 3;;
val it : bool = true;
lt “ba” “ab” ;;
val it : bool = false;

let is5Lt = lt 5;
val is5lt : int -> bool = fn;
is5lt 10;
val it : bool = true;
is5lt 2;
val it : bool = false;

Put it together: a “quicksort” function

let rec sort xs =
 match xs with
 | [] -> []
 | (h::t) -> let (l,r) = partition ((<) h) t in
 (sort l)@(h::(sort r))

Now, lets begin at the beginning …

News

• Ocaml-top issues?
• Please post questions to Piazza
• Seating: Don’t Worry!

Expressions Values

Types

Many kinds of expressions: 
 

1. Simple  
2. Variables  
3. Functions

What about more complex data ?

What about more complex data ?

• We’ve seen some base types and values:
– Integers, Floats, Bool, String etc.

• Some ways to build up types:
– Products (tuples), records, “lists”
– Functions

• Design Principle: Orthogonality
– Don’t clutter core language with stuff
– Few, powerful orthogonal building techniques
– Put “derived” types, values, functions in libraries

What about more complex data ?

• We’ve seen some base types and values:
– Integers, Floats, Bool, String etc.

• Some ways to build up types:
– Products (tuples), records, “lists”
– Functions

Next: Building datatypes
Three key ways to build complex types/values

1. “Each-of” types
Value of T contains value of T1 and a value of T2

2. “One-of” types
Value of T contains value of T1 or a value of T2

3. “Recursive”
Value of T contains (sub)-value of same type T

Next: Building datatypes
Three key ways to build complex types/values

1. “Each-of” types (T1 * T2)
Value of T contains value of T1 and a value of T2

2. “One-of” types
Value of T contains value of T1 or a value of T2

3. “Recursive”
Value of T contains (sub)-value of same type T

Suppose I wanted …
… a program that processed lists of attributes

• Name (string)
• Age (integer)

• DOB (int-int-int)

• Address (string)

• Height (float)

• Alive (boolean)
• Phone (int-int)

• email (string)

Many kinds of attributes (too many to put in a record)
• can have multiple names, addresses, phones, emails etc.
Want to store them in a list. Can I ?

Suppose I wanted …
Attributes:
• Name (string)
• Age (integer)
• DOB (int-int-int)
• Address (string)
• Height (real)
• Alive (boolean)
• Phone (int-int)
• email (string)

type attrib =
 Name of string
| Age of int
| DOB of int*int*int
| Address of string
| Height of float
| Alive of bool
| Phone of int*int
| Email of string;;

Quiz: Here is a typedef ...
 type attrib = Name of string

 | Age of int
 | Height of float

What is the type of: Name “Tony Stark”
(a) Syntax Error
(b) Type Error
(c) string
(d) attrib
(e) ’a

Constructing Datatypes

t is a new datatype.
A value of type t is either:
 a value of type t1 placed in a box labeled C1

Or a value of type t2 placed in a box labeled C2

Or …
Or a value of type tn placed in a box labeled Cn

type t = C1 of t1 | C2 of t2 | … | Cn of tn

Constructing Datatypes

type t = C1 of t1 | C2 of t2 | … | Cn of tn

Value:t1

Label=C1

OR
Value:t2

Label=C2

OR
Value:tn

Label=Cn

All have the type t

t

How to PUT values into box?

Question: Here is a typedef ...
 type attrib = Name of string
 | Age of int
 | Height of float

What is the type of: Age “Tony Stark”
(a) Syntax Error
(b) Type Error
(c) string
(d) attrib
(e) ’a

How to PUT values into box?
How to create values of type attrib ?

type attrib =
 Name of string
| Age of int
| DOB of int*int*int
| Address of string
| Height of float
| Alive of bool
| Phone of int*int
| Email of string;;

let a1 = Name “Ranjit”;;
val x : attrib = Name “Ranjit”
let a2 = Height 5.83;;
val a2 : attrib = Height 5.83
let year = 1977 ;;
val year : int = 1977
let a3 = DOB (9,8,year) ;;
val a3 : attrib = DOB (9,8,1977)
let a_l = [a1;a2;a3];;
val a3 : attrib list = …

Constructing Datatypes

“Ranjit”

Name

OR
34

Age

OR
(9,8,77)

DOB

type attrib
 = Name of string | Age of int | DOB of int*int*int
 | Address of string | Height of float | Alive of bool
 | Phone of int*int | Email of string;;

All have type attrib
Name “Ranjit” Age 34 DOB (9,8,77)

One-of types

• We’ve defined a “one-of” type named attrib

• Elements are one of:
– string,
– int,
– int*int*int,
– float,
– bool …

• Can create uniform attrib lists

• Say I want a function to print attribs…

datatype attrib =
 Name of string
| Age of int
| DOB of int*int*int
| Address of string
| Height of real
| Alive of bool
| Phone of int*int
| Email of string;

Question: Here is a typedef ...
 type attrib = Name of string

 | Age of int
 | Height of float

What is the type of:
 [Name “Ranjit”; Age 35; Dob(9,8,77)]

(a) Syntax Error
(b) Type Error
(c) string * int * (int*int*int) list
(d) ’a list
(e) attrib list

How to TEST & TAKE whats in box?

Is it a ...
string?

or an
int?

or an
int*int*int?

or ...

How to TEST & TAKE whats in box?

Look at TAG!Tag

Question: Here is a typedef ...
type attrib = Name of string | Age of int | ...

What does this evaluate to?
 let welcome a = match a with
 | Name s -> s
 in welcome (Name “Ranjit”)

(a) Name “Ranjit” : ‘a

(b) Type Error
(c) Name “Ranjit” : attrib
(d) “Ranjit” : string
(e) Runtime Error

How to tell whats in the box ?
type attrib =
 Name of string
| Age of int
| DOB of int*int*int
| Address of string
| Height of float
| Alive of bool
| Phone of int*int

Pattern-match expression: check if e is of the form …
• On match:

– value in box bound to pattern variable
– matching result expression is evaluated

• Simultaneously test and extract contents of box

match e with
| Name s -> ...(*s: string *)
| Age i -> ...(*i: int *)
| DOB(d,m,y)-> ...(*d: int,m: int,y: int*)
| Address a -> ...(*a: string*)
| Height h -> ...(*h: int *)
| Alive b -> ...(*b: bool*)
| Phone(y,r)-> ...(*a: int, r: int*)

How to tell whats in the box ?
match e with
| Name s -> printf "%s" s
| Age i -> printf "%d" i
| DOB(d,m,y) -> printf "%d/%d/%d" d m y
| Address s -> printf "%s" s
| Height h -> printf "%f" h
| Alive b -> printf "%b" b s
| Phone(a,r) -> printf "(%d)-%d" a r

Pattern-match expression: check if e is of the form …
• On match:

– value in box bound to pattern variable
– matching result expression is evaluated

• Simultaneously test and extract contents of box

Question: Here is a typedef ...
type attrib = Name of string | Age of int | ...
What does this evaluate to?
 let welcome a = match a with
 | Name s -> s
 in welcome (Age 34)

(a) Name “Ranjit” : ‘a

(b) Type Error
(c) Name “Ranjit” : attrib
(d) “Ranjit” : string
(e) Runtime Error

How to tell whats in the box

First case matches the tag (Name)

Evals branch with s “bound” to string contents

match (Name “Ranjit”) with
 | Name s -> printf "Hello %s\n" s
 | Age i -> printf "%d years old" i
 ;;

Hello Ranjit
- : unit = ()

How to TEST & TAKE whats in box?

BEWARE!!
Be sure to
handle all
TAGS!

Tag

Beware! Handle All TAGS!

None of the cases matched the tag (Name)
Causes nasty Run-Time Error

match (Name “Ranjit”) with
 | Age i -> Printf.printf "%d" i
 | Email s -> Printf.printf "%s" s
 ;;

Exception: Match Failure!!

Compiler To The Rescue!!

Compile-time checks for:
missed cases: ML warns if you miss a case!

let printAttrib a =
 match a with
 Name s -> Printf.printf "%s" s
 | Age i -> Printf.printf "%d" i
 | DOB (d,m,y) -> Printf.printf "%d / %d / %d" d m y
 | Address addr -> Printf.printf "%s" addr
 | Height h -> Printf.printf "%f" h
 | Alive b -> Printf.printf "%b" b
 | Email e -> Printf.printf "%s" e
 ;;
Warning P: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Phone (_, _)

Q: What does this evaluate to ?
type attrib = Name of string | ...

 let welcome a = match a with
 | Name s -> “Hello!” ^ s
 | Name s -> “Welcome!” ^ s
 in welcome (Name “Mickey”)

(a) Type Error

(b) “Welcome!Mickey” : string

(c) Runtime Error

(d) “Hello!Mickey” : string

(e) “Hello!MickeyWelcome!Mickey”Ranjit” : string

Compiler To The Rescue!!

Compile-time checks for:
redundant cases: ML warns if a case never matches

let printAttrib a =
 match a with
 Name s -> Printf.printf "%s" s
 | Age i -> Printf.printf "%d" i
 | DOB (d,m,y) -> Printf.printf "%d / %d / %d" d m y
 ...
 | Age i -> Printf.printf "%d" i
 ;;

Warning U: this match case is unused.

Benefits of match-with

1. Simultaneous test-extract-bind
2. Compile-time checks for:

missed cases: ML warns if you miss a t value
redundant cases: ML warns if a case never matches

type t =
 C1 of t1
| C2 of t2
| …
| Cn of tn

match e with
 C1 x1 -> e1
| C2 x2 -> e2
| …
| Cn xn -> en

match-with is an Expression

match e with
 C1 x1 -> e1
| C2 x2 -> e2
| …
| Cn xn -> en

Q: What does this evaluate to ?
type attrib = Name of string | Age of int | ...

 let welcome a = match a with
 | Name s -> s
 | Age i -> i
 in welcome (Name “Ranjit”)

(a) “Ranjit” : string
(b) Type Error
(c) Name “Ranjit” : attrib
(d) Runtime Error

match e with
 Name s -> e1
| Age i -> e2
| DOB (m,d,y) -> e3
| Address a -> e4
| Height h -> e5
| Alive b -> e6
| Phone (a,n) -> e7
| Email e -> e8

{ TT

Type Rule
• e1, e2,…,en must have same type T
• Type of whole expression is T

match-with is an Expression

Next: Building datatypes
Three key ways to build complex types/values

1. “Each-of” types t1 * t2
Value of T contains value of T1 and a value of T2

2. “One-of” types type t = C1 of t1 | C2 of t2
Value of T contains value of T1 or a value of T2

3. “Recursive” type
Value of T contains (sub)-value of same type T

“Recursive” types

type nat = Zero | Succ of nat

“Recursive” types

type nat = Zero | Succ of nat

Wait a minute! Zero of what ?!

“Recursive” types

type nat = Zero | Succ of nat

Wait a minute! Zero of what ?!

Relax.

Means “empty box with label Zero”

“Recursive” types

type nat = Zero | Succ of nat

What are values of nat ?

“Recursive” types

type nat = Zero | Succ of nat

Zero

What are values of nat ?

“Recursive” types

type nat = Zero | Succ of nat

Zero

Succ

What are values of nat ?
One nat contains another!

“Recursive” types

type nat = Zero | Succ of nat

Zero

Succ

Succ

What are values of nat ?
One nat contains another!

“Recursive” types

type nat = Zero | Succ of nat

Zero

Succ

Succ

Succ

What are values of nat ?
One nat contains another!

“Recursive” types

What are values of nat ?

type nat = Zero | Succ of nat

Zero

Succ

Succ

Succ

..
.

One nat contains another!

nat = recursive type

Next: Building datatypes
Three key ways to build complex types/values

1. “Each-of” types t1 * t2
Value of T contains value of T1 and a value of T2

2. “One-of” types type t = C1 of t1 | C2 of t2
Value of T contains value of T1 or a value of T2

3. “Recursive” type type t = ...| C of (...*t)
Value of T contains (sub)-value of same type T

Next: Lets get cosy with Recursion

Recursive Code Mirrors Recursive Data

Next: Lets get cosy with Recursion

Code Structure = Type Structure!!!

to_int : nat -> int

let rec to_int n =

type nat =
| Zero
| Succ of nat

to_int : nat -> int

let rec to_int n =

type nat =
| Zero
| Succ of nat

Base pattern

Inductive pattern

to_int : nat -> int

let rec to_int n = match n with
| Zero ->
| Succ m ->

type nat =
| Zero
| Succ of nat

Base pattern

Inductive pattern

Base pattern

Inductive pattern

to_int : nat -> int

let rec to_int n = match n with
| Zero -> 0
| Succ m -> 1 + to_int m

type nat =
| Zero
| Succ of nat

Base pattern

Inductive pattern

Base Expression

Inductive Expression

Base pattern

Inductive pattern

Q: What does this evaluate to ?
let rec foo n =
 if n<=0 then Zero else Succ(foo(n-1))
in foo 2

(a) Zero : nat
(b) Type Error
(c) 2 : nat
(c) Succ(Zero): nat
(c) Succ(Succ(Zero)) : nat

of_int : int -> nat

let rec of_int n =

type nat =
| Zero
| Succ of nat

of_int : int -> nat

let rec of_int n =

type nat =
| Zero
| Succ of nat

Base pattern

Inductive pattern

of_int : int -> nat

let rec of_int n =
 if n <= 0 then

 else

type nat =
| Zero
| Succ of nat

Base pattern

Inductive pattern

Base pattern

Inductive pattern

of_int : int -> nat

let rec of_int n =
 if n <= 0 then
 Zero
 else
 Succ (of_int (n-1))

type nat =
| Zero
| Succ of nat

Base pattern

Inductive pattern

Base Expression

Inductive Expression

Base pattern

Inductive pattern

plus : nat*nat -> nat

type nat =
| Zero
| Succ of nat

let rec plus (n,m) =

plus : nat*nat -> nat

type nat =
| Zero
| Succ of nat

let rec plus (n,m) =

Base pattern

Inductive pattern

plus : nat*nat -> nat

type nat =
| Zero
| Succ of nat

let rec plus (n,m) =
match m with
| Zero ->
| Succ m’ ->

Base pattern

Inductive pattern

Base pattern

Inductive pattern

plus : nat*nat -> nat

type nat =
| Zero
| Succ of nat

let rec plus (n,m) =
match m with
| Zero -> n
| Succ m’ -> Succ (plus (n,m’))

Base Expression

Inductive Expression

Base pattern

Inductive pattern

Base pattern

Inductive pattern

times: nat*nat -> nat

type nat =
| Zero
| Succ of nat

let rec times (n,m) =

times: nat*nat -> nat

type nat =
| Zero
| Succ of nat

let rec times (n,m) =

Base pattern

Inductive pattern

times: nat*nat -> nat

type nat =
| Zero
| Succ of nat

let rec times (n,m) =
match m with
| Zero ->
| Succ m’ ->

Base pattern

Inductive pattern

Base pattern

Inductive pattern

plus : nat*nat -> nat

type nat =
| Zero
| Succ of nat

let rec times (n,m) =
match m with
| Zero -> Zero
| Succ m’ -> plus n (times (n,m’))

Base Expression

Inductive Expression

Base pattern

Inductive pattern

Base pattern

Inductive pattern

minus: nat*nat -> nat

type nat =
| Zero
| Succ of nat

let rec minus (n,m) =

times: nat*nat -> nat

type nat =
| Zero
| Succ of nat

let rec minus (n,m) =

Base pattern

Inductive pattern

times: nat*nat -> nat

type nat =
| Zero
| Succ of nat

let rec minus (n,m) =
match (n, m) with
| (_, Zero) -> n
| (Succ n’, Succ m’) -> minus(n’,m’)

Base pattern

Inductive pattern

Base pattern

Inductive pattern

times: nat*nat -> nat

type nat =
| Zero
| Succ of nat

let rec minus (n,m) =
match (n, m) with
| (_, Zero) -> n
| (Succ n’, Succ m’) -> minus(n’,m’)

Base pattern

Inductive pattern

Base pattern

Inductive pattern

Base Expression

Inductive Expression

Next: Lets get cosy with Recursion

Recursive Code Mirrors Recursive Data

Lists are recursive types!

Think about this! What are values of int_list ?

type int_list =
 Nil
| Cons of int * int_list

NilCons(3,Nil)Cons(2,Cons(3,Nil))Cons(1,Cons(2,Cons(3,Nil)))

NilCons 3,
Cons

2,
Cons

1,

Lists aren’t built-in !

Lists are a derived type: built using elegant core!
1. Each-of
2. One-of
3. Recursive

:: is just a pretty way to say “Cons”
[] is just a pretty way to say “Nil”

datatype int_list =
 Nil
| Cons of int * int_list

Some functions on Lists : Length
let rec len l =
 match l with
 Nil -> 0
 | Cons(h,t) -> 1 + (len t)

Base Expression

Inductive Expression

Base pattern

Ind pattern

let rec len l =
 match l with
 Nil -> 0
 | Cons(_,t) -> 1 + (len t)

let rec len l =
 match l with
 Cons(_,t) -> 1 + (len t)
 | _ -> 0

Matches everything, no binding Pattern-matching in order
- Must match with Nil

Some functions on Lists : Append
let rec append (l1,l2) =
 Base Expression

Inductive Expression

Base pattern

Ind pattern

• Find the right induction strategy
– Base case: pattern + expression
– Induction case: pattern + expression

Well designed datatype gives strategy

null, hd, tl are all functions …

Bad ML style: More than aesthetics !

Pattern-matching better than test-extract:
• ML checks all cases covered
• ML checks no redundant cases
• …at compile-time:

– fewer errors (crashes) during execution
– get the bugs out ASAP!

Some functions on Lists : Max
let rec max xs =
 Base Expression

Inductive Expression

Base pattern

Ind pattern

• Find the right induction strategy
– Base case: pattern + expression
– Induction case: pattern + expression

Well designed datatype gives strategy

Next: Lets get cosy with Recursion

Recursive Code Mirrors Recursive Data

Q: How is this tree represented ?

1 2 3

type tree =
| Leaf of int
| Node of tree*tree

(a) (1, 2), 3
(b) (Leaf 1, Leaf 2), Leaf 3
(c) Node (Node (Leaf 1, Leaf 2), Leaf 3)
(d) Node ((Leaf 1, Leaf 2), Leaf 3)

(e) None of the above

Representing Trees

1 2 3

type tree =
| Leaf of int
| Node of tree*tree

Leaf

1

 Node(Node(Leaf 1, Leaf 2), Leaf 3)

Representing Trees

1 2 3

type tree =
| Leaf of int
| Node of tree*tree

Leaf

2

 Node(Node(Leaf 1, Leaf 2), Leaf 3)

Representing Trees

1 2 3

type tree =
| Leaf of int
| Node of tree*tree

Leaf

1

Node

Leaf

2

 Node(Node(Leaf 1, Leaf 2), Leaf 3)

Representing Trees

1 2 3

type tree =
| Leaf of int
| Node of tree*tree

Leaf

3

 Node(Node(Leaf 1, Leaf 2), Leaf 3)

Representing Trees

1 2 3

type tree =
| Leaf of int
| Node of tree*tree

Leaf

1
Leaf

3

Node

Node

Leaf

2

 Node(Node(Leaf 1, Leaf 2), Leaf 3)

Representing Trees

1 2 3

type tree =
| Leaf of int
| Node of tree*tree

Leaf

1
Leaf

3

Node

Node

Leaf

2

 Node(Node(Leaf 1, Leaf 2), Leaf 3)

Next: Lets get cosy with Recursion

Recursive Code Mirrors Recursive Data

Q: What does this evaluate to ?

 let rec foo t = match t with
 | Leaf n -> 1
 | Node (t1, t2) -> foo t1 + foo t2

 foo (Node(Node(Leaf 1,Leaf 2),Leaf 3))

(a) Type Error
(b) 1 : int
(c) 3 : int
(d) 6 : int

sum_leaf: tree -> int

“Sum up the leaf values”. E.g.

let t0 = Node(Node(Leaf 1, Leaf 2), Leaf 3);;

sum_leaf t0 ;;

- : int = 6

type tree =
| Leaf of int
| Node of tree*tree

sum_leaf: tree -> int

let rec sum_leaf t =

type tree =
| Leaf of int
| Node of tree*tree

sum_leaf: tree -> int

let rec sum_leaf t =

Base pattern

Inductive pattern

type tree =
| Leaf of int
| Node of tree*tree

sum_leaf: tree -> int

let rec sum_leaf t =
match t with
|Leaf n ->
|Node(t1,t2)->

Base pattern

Inductive pattern

Base pattern

Inductive pattern

type tree =
| Leaf of int
| Node of tree*tree

sum_leaf: tree -> int

let rec sum_leaf t =
match t with
|Leaf n -> n
|Node(t1,t2)-> sum_leaf t1 + sum_leaf t2

Base Expression

Inductive Expression

Base pattern

Inductive pattern

Base pattern

Inductive pattern

Recursive Code Mirrors Recursive Data

Code almost writes itself!

Another Example: Calculator
Want an arithmetic calculator to evaluate expressions like:
• 4.0 + 2.9
• 3.78 – 5.92
• (4.0 + 2.9) * (3.78 -5.92)

Another Example: Calculator
Want an arithmetic calculator to evaluate expressions like:
• 4.0 + 2.9 ====> 6.9
• 3.78 – 5.92 ====> -2.14
• (4.0 + 2.9) * (3.78 -5.92) ====> -14.766

Whats a ML TYPE for REPRESENTING expressions ?

Another Example: Calculator

type expr =
| Num of float
| Add of expr*expr
| Sub of expr*expr
| Mul of expr*expr

Want an arithmetic calculator to evaluate expressions like:
• 4.0 + 2.9 ====> 6.9
• 3.78 – 5.92 ====> -2.14
• (4.0 + 2.9) * (3.78 -5.92) ====> -14.766

Whats a ML TYPE for REPRESENTING expressions ?

Another Example: Calculator

type expr =
| Num of float
| Add of expr*expr
| Sub of expr*expr
| Mul of expr*expr

Want an arithmetic calculator to evaluate expressions like:
• 4.0 + 2.9 ====> 6.9
• 3.78 – 5.92 ====> -2.14
• (4.0 + 2.9) * (3.78 -5.92) ====> -14.766

Whats a ML FUNCTION for EVALUATING expressions ?

Another Example: Calculator

type expr =
| Num of float
| Add of expr*expr
| Sub of expr*expr
| Mul of expr*expr

Want an arithmetic calculator to evaluate expressions like:
• 4.0 + 2.9 ====> 6.9
• 3.78 – 5.92 ====> -2.14
• (4.0 + 2.9) * (3.78 -5.92) ====> -14.766

Whats a ML FUNCTION for EVALUATING expressions ?

Another Example: Calculator

type expr =
| Num of float
| Add of expr*expr
| Sub of expr*expr
| Mul of expr*expr

Want an arithmetic calculator to evaluate expressions like:
• 4.0 + 2.9 ====> 6.9
• 3.78 – 5.92 ====> -2.14
• (4.0 + 2.9) * (3.78 -5.92) ====> -14.766

Whats a ML FUNCTION for EVALUATING expressions ?

let rec eval e = match e with
|Num f ->
|Add(e1,e2)->
|Sub(e1,e2)->
|Mul(e1,e2)->

Another Example: Calculator

type expr =
| Num of float
| Add of expr*expr
| Sub of expr*expr
| Mul of expr*expr

Want an arithmetic calculator to evaluate expressions like:
• 4.0 + 2.9 ====> 6.9
• 3.78 – 5.92 ====> -2.14
• (4.0 + 2.9) * (3.78 -5.92) ====> -14.766

Whats a ML FUNCTION for EVALUATING expressions ?

let rec eval e = match e with
|Num f -> f
|Add(e1,e2)-> eval e1 +. eval e2
|Sub(e1,e2)-> eval e1 -. eval e2
|Mul(e1,e2)-> eval e1 *. eval e2

Random Art from Expressions
PA #2
Build more funky expressions, evaluate them, to produce:

